A Semantic neighborhood approach to relatedness evaluation on well-founded domain ontologies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/225697 |
Resumo: | No contexto do processamento de linguagem natural e recuperação de informações, as ontologias podem melhorar os resultados das técnicas de desambiguação. Ao tornar explícita a semântica do termo, as medidas semânticas baseadas em ontologia desempenham um papel crucial para determinar como diferentes classes de ontologia têm um significado semelhante ou relacionado. Nesse contexto, é comum usar similaridade semântica como base para a desembiguação. No entanto, as medidas geralmente consideram apenas relações taxonômicas, o que afeta negativamente a discriminação de duas classes de ontologia relacionadas por outros tipos de relações. Por outro lado, as medidas de relacionamento semântico consideram diversos tipos de relacionamentos ontológicos para determinar o quanto duas classes estão relacionadas. No entanto, essas medidas, especialmente as abordagens baseadas em caminhos, têm como principal desvantagem uma alta complexidade computacional para sua execução. Além disso, tende a ser impraticável armazenar na memória todos os valores de similaridade ou relacionamento entre todas as classes de uma ontologia, especialmente para ontologias com um grande número de classes. Neste trabalho, propomos uma nova abordagem baseada em vizinhos semânticos que visa melhorar o desempenho das medidas baseadas em conhecimento na análise de relacionamento. Também explicamos como usar esta proposta em medidas baseadas em caminhos e características. Avaliamos nossa proposta na desambiguação utilizando uma ontologia de domínio preexistente para descrição de testemunhos. Esta ontologia contém 929 classes relacionadas a fácies de rocha. Além disso, usamos um conjunto de sentenças de quatro corpora diferentes no domínio Petróleo e Gás. Em nossos experimentos, comparamos nossa proposta com medidas de relacionamento semântico do estado-daarte, como métodos baseados em caminhos, características, conteúdo de informação, e métodos híbridos em relação ao F-score, tempo de avaliação e consumo de memória. Os resultados experimentais mostram que o método proposto obtém ganhos de F-score na desambiguação, além de um baixo tempo de avaliação e consumo de memória em relação às medidas tradicionais baseadas em conhecimento. |
id |
URGS_e5effb10f919e5ae79fa428e34690043 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/225697 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Lopes Junior, Alcides GonçalvesAbel, Mara2021-08-14T01:02:14Z2020http://hdl.handle.net/10183/225697001114285No contexto do processamento de linguagem natural e recuperação de informações, as ontologias podem melhorar os resultados das técnicas de desambiguação. Ao tornar explícita a semântica do termo, as medidas semânticas baseadas em ontologia desempenham um papel crucial para determinar como diferentes classes de ontologia têm um significado semelhante ou relacionado. Nesse contexto, é comum usar similaridade semântica como base para a desembiguação. No entanto, as medidas geralmente consideram apenas relações taxonômicas, o que afeta negativamente a discriminação de duas classes de ontologia relacionadas por outros tipos de relações. Por outro lado, as medidas de relacionamento semântico consideram diversos tipos de relacionamentos ontológicos para determinar o quanto duas classes estão relacionadas. No entanto, essas medidas, especialmente as abordagens baseadas em caminhos, têm como principal desvantagem uma alta complexidade computacional para sua execução. Além disso, tende a ser impraticável armazenar na memória todos os valores de similaridade ou relacionamento entre todas as classes de uma ontologia, especialmente para ontologias com um grande número de classes. Neste trabalho, propomos uma nova abordagem baseada em vizinhos semânticos que visa melhorar o desempenho das medidas baseadas em conhecimento na análise de relacionamento. Também explicamos como usar esta proposta em medidas baseadas em caminhos e características. Avaliamos nossa proposta na desambiguação utilizando uma ontologia de domínio preexistente para descrição de testemunhos. Esta ontologia contém 929 classes relacionadas a fácies de rocha. Além disso, usamos um conjunto de sentenças de quatro corpora diferentes no domínio Petróleo e Gás. Em nossos experimentos, comparamos nossa proposta com medidas de relacionamento semântico do estado-daarte, como métodos baseados em caminhos, características, conteúdo de informação, e métodos híbridos em relação ao F-score, tempo de avaliação e consumo de memória. Os resultados experimentais mostram que o método proposto obtém ganhos de F-score na desambiguação, além de um baixo tempo de avaliação e consumo de memória em relação às medidas tradicionais baseadas em conhecimento.In the context of natural language processing and information retrieval, ontologies can improve the results of the word sense disambiguation (WSD) techniques. By making explicit the semantics of the term, ontology-based semantic measures play a crucial role in determining how different ontology classes have a similar or related meaning. In this context, it is common to use semantic similarity as a basis for WSD. However, the measures generally consider only taxonomic relationships, which negatively affect the discrimination of two ontology classes that are related by the other relationship types. On the other hand, semantic relatedness measures consider diverse types of relationships to determine how much two classes on the ontology are related. However, these measures, especially the path-based approaches, have as the main drawback a high computational complexity to calculate the relatedness value. Also, for both types of semantic measures, it is unpractical to store all similarity or relatedness values between all ontology classes in memory, especially for ontologies with a large number of classes. In this work, we propose a novel approach based on semantic neighbors that aim to improve the performance of the knowledge-based measures in relatedness analysis. We also explain how to use this proposal into the path and feature-based measures. We evaluate our proposal on WSD using an existent domain ontology for a well-core description. This ontology contains 929 classes related to rock facies. Also, we use a set of sentences from four different corpora on the Oil&Gas domain. In the experiments, we compare our proposal with state-of-the-art semantic relatedness measures, such as path-based, feature-based, information content, and hybrid methods regarding the F-score, evaluation time, and memory consumption. The experimental results show that the proposed method obtains F-score gains in WSD, as well as a low evaluation time and memory consumption concerning the traditional knowledge-based measures.application/pdfengProcessamento : Linguagem naturalInteligência artificialKnowledge-based measuresRelatedness measuresSemantic neighborsOntological meta-propertiesWord sense disambiguationA Semantic neighborhood approach to relatedness evaluation on well-founded domain ontologiesUma abordagem baseada em vizinhos semânticos para a avaliação de relacionamento em ontologias bem fundamentadas info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2020mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001114285.pdf.txt001114285.pdf.txtExtracted Texttext/plain162282http://www.lume.ufrgs.br/bitstream/10183/225697/2/001114285.pdf.txt10e3f3f1c7cde987ec7aae4b2edb9b83MD52ORIGINAL001114285.pdfTexto completo (inglês)application/pdf2209021http://www.lume.ufrgs.br/bitstream/10183/225697/1/001114285.pdfafe590d919a6c00f57a6a469753926d8MD5110183/2256972022-12-15 05:51:26.08889oai:www.lume.ufrgs.br:10183/225697Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532022-12-15T07:51:26Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
A Semantic neighborhood approach to relatedness evaluation on well-founded domain ontologies |
dc.title.alternative.pt.fl_str_mv |
Uma abordagem baseada em vizinhos semânticos para a avaliação de relacionamento em ontologias bem fundamentadas |
title |
A Semantic neighborhood approach to relatedness evaluation on well-founded domain ontologies |
spellingShingle |
A Semantic neighborhood approach to relatedness evaluation on well-founded domain ontologies Lopes Junior, Alcides Gonçalves Processamento : Linguagem natural Inteligência artificial Knowledge-based measures Relatedness measures Semantic neighbors Ontological meta-properties Word sense disambiguation |
title_short |
A Semantic neighborhood approach to relatedness evaluation on well-founded domain ontologies |
title_full |
A Semantic neighborhood approach to relatedness evaluation on well-founded domain ontologies |
title_fullStr |
A Semantic neighborhood approach to relatedness evaluation on well-founded domain ontologies |
title_full_unstemmed |
A Semantic neighborhood approach to relatedness evaluation on well-founded domain ontologies |
title_sort |
A Semantic neighborhood approach to relatedness evaluation on well-founded domain ontologies |
author |
Lopes Junior, Alcides Gonçalves |
author_facet |
Lopes Junior, Alcides Gonçalves |
author_role |
author |
dc.contributor.author.fl_str_mv |
Lopes Junior, Alcides Gonçalves |
dc.contributor.advisor1.fl_str_mv |
Abel, Mara |
contributor_str_mv |
Abel, Mara |
dc.subject.por.fl_str_mv |
Processamento : Linguagem natural Inteligência artificial |
topic |
Processamento : Linguagem natural Inteligência artificial Knowledge-based measures Relatedness measures Semantic neighbors Ontological meta-properties Word sense disambiguation |
dc.subject.eng.fl_str_mv |
Knowledge-based measures Relatedness measures Semantic neighbors Ontological meta-properties Word sense disambiguation |
description |
No contexto do processamento de linguagem natural e recuperação de informações, as ontologias podem melhorar os resultados das técnicas de desambiguação. Ao tornar explícita a semântica do termo, as medidas semânticas baseadas em ontologia desempenham um papel crucial para determinar como diferentes classes de ontologia têm um significado semelhante ou relacionado. Nesse contexto, é comum usar similaridade semântica como base para a desembiguação. No entanto, as medidas geralmente consideram apenas relações taxonômicas, o que afeta negativamente a discriminação de duas classes de ontologia relacionadas por outros tipos de relações. Por outro lado, as medidas de relacionamento semântico consideram diversos tipos de relacionamentos ontológicos para determinar o quanto duas classes estão relacionadas. No entanto, essas medidas, especialmente as abordagens baseadas em caminhos, têm como principal desvantagem uma alta complexidade computacional para sua execução. Além disso, tende a ser impraticável armazenar na memória todos os valores de similaridade ou relacionamento entre todas as classes de uma ontologia, especialmente para ontologias com um grande número de classes. Neste trabalho, propomos uma nova abordagem baseada em vizinhos semânticos que visa melhorar o desempenho das medidas baseadas em conhecimento na análise de relacionamento. Também explicamos como usar esta proposta em medidas baseadas em caminhos e características. Avaliamos nossa proposta na desambiguação utilizando uma ontologia de domínio preexistente para descrição de testemunhos. Esta ontologia contém 929 classes relacionadas a fácies de rocha. Além disso, usamos um conjunto de sentenças de quatro corpora diferentes no domínio Petróleo e Gás. Em nossos experimentos, comparamos nossa proposta com medidas de relacionamento semântico do estado-daarte, como métodos baseados em caminhos, características, conteúdo de informação, e métodos híbridos em relação ao F-score, tempo de avaliação e consumo de memória. Os resultados experimentais mostram que o método proposto obtém ganhos de F-score na desambiguação, além de um baixo tempo de avaliação e consumo de memória em relação às medidas tradicionais baseadas em conhecimento. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020 |
dc.date.accessioned.fl_str_mv |
2021-08-14T01:02:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/225697 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001114285 |
url |
http://hdl.handle.net/10183/225697 |
identifier_str_mv |
001114285 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/225697/2/001114285.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/225697/1/001114285.pdf |
bitstream.checksum.fl_str_mv |
10e3f3f1c7cde987ec7aae4b2edb9b83 afe590d919a6c00f57a6a469753926d8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1816737037156352000 |