Arcos gravitacionais em aglomerados de galáxias : detecção, caracterização e modelamento

Detalhes bibliográficos
Autor(a) principal: Furlanetto, Cristina
Data de Publicação: 2012
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/72088
Resumo: Lentes gravitacionais são uma ferramenta importante para uma variedade de,aplicações astrofísicas e cosmológicas. Em particular, arcos gravitacionais' produzidos por aglomerados de galáxias podem ser utilizados para investigar a distribuição central, de massa destes. Desta forma, eles podem fornecer informações indiretas sobre a cosmologia e a formação de estruturas. Sondagens futuras de grande campo com.excelente qualidade de imagem, como o Dark Energy Survey, fornecerão grandes amostras de sistemas de arcos gravitacionais, permitindo a realização de vários estudos estatísticos. Devido às grandes áreas, algoritmos de detecção e caracterização de arcos são absolutamente necessários. Além disso, é extremamente importante desenvolver métodos de pré-processamento de imagens que evidenciem estes objetos • de interesse em meio a outros objetos e à luz difusa das galáxias que estão à' sua volta. Neste trabalho apresentamos ferramentas relacionadas ao pré-processamento, simulação e caracterização de arcos gravitacionaià em imagens de aglomeradoS de galáxias. A primeira dessas ferramentas, chamada PAINTARCS, realiza simulações de objetos, com , morfologia de arcos, utilizando uma prescrição simples para a forma do arco, no qual esta é dada pela deformação de uma elipse sobre um segmento de arco de círculo, e os adiciona a imagens de aglomerados de galáxias. A segunda ferramenta, denominada ARCFITTING, utiliza a mesma expressão analítica que descreve os arcos no PAINTARCS para ajustar os parâmetros do arco a partir de uma imagem. Este método leva em conta a distribuição .de brilho dos arcos e foi desenvolvido para fornecer medidas mais robustas. Resultados do ARCFITTING mostram'que os arcos gerados pelo PAINTARCS são minimamente realistas para serem usados em simulações. Assim, uma importante aplicação dessas duas ferramentas e a simulação de arcos para os Data Challenges do Dark Energy Survey. A terceira ferramenta, chamada GALCLEAN, consiste em um método de pré-processamento de imagens de aglomerados de galáxias que subtrai de maneira automatizada a distribuição de brilho superficial das galáxias utilizando perfis de Sérsic. Esta ferramenta tem por objetivo evidenciar a eventual presença de arcos gravitacionais em meio a outros objetos da imagem. Para determinar a eficiência e o impacto do GALCLEAN realizamos um estudo sistemático da detectabilidade dos arcos em imagens simulàas de aglomerados de galáxias onde arcos com parâmetros conhecidos diferentes foram adicionados com o algOritmo PAINTARCS. Os resultados deste estudo indicam que o GALCLEAN apresenta um impacto maior na detectabilidade dos arcos para os casos de arcos de magnitudes mais tênues e aglomeradbs de alto desvio para o vermelho, embora introduza um grande número de detecções espúrias. O GALCLEAN também gera um catálogo com os parâmetros morfológicos e estruturais das galáxias subtraídas, que tem aplicações no estudo da estrutura e evolução das galáxias. Também apresentamos neste trabalho a sondagem de arcos gravItacionais SOAR Gravitational Arc Survey, um levantamento de 47 aglomerados de galáxias que tem como objetivo • de buscar novos sistemas de lentes gravitacionais e estudar a variação da eficiência do lenteamento forte em função do desvio para o vermelho do aglomerado, de forma a comparar os resultados com as expectativas teóricas. Os dados desta sondagem foram reduzidos e analisados. Identificamos nas imagens de 8 aglomerados, 16 candidatos a arco gravitacional. Estes resultados preliminares sugerem que 10% de aglomerados tem arcos, consistente com ' estudos anteriores da literatura.
id URGS_e72348c2127052c565f548799de10418
oai_identifier_str oai:www.lume.ufrgs.br:10183/72088
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Furlanetto, CristinaSantiago, Basilio XavierMakler, Martín2013-05-30T01:44:23Z2012http://hdl.handle.net/10183/72088000882140Lentes gravitacionais são uma ferramenta importante para uma variedade de,aplicações astrofísicas e cosmológicas. Em particular, arcos gravitacionais' produzidos por aglomerados de galáxias podem ser utilizados para investigar a distribuição central, de massa destes. Desta forma, eles podem fornecer informações indiretas sobre a cosmologia e a formação de estruturas. Sondagens futuras de grande campo com.excelente qualidade de imagem, como o Dark Energy Survey, fornecerão grandes amostras de sistemas de arcos gravitacionais, permitindo a realização de vários estudos estatísticos. Devido às grandes áreas, algoritmos de detecção e caracterização de arcos são absolutamente necessários. Além disso, é extremamente importante desenvolver métodos de pré-processamento de imagens que evidenciem estes objetos • de interesse em meio a outros objetos e à luz difusa das galáxias que estão à' sua volta. Neste trabalho apresentamos ferramentas relacionadas ao pré-processamento, simulação e caracterização de arcos gravitacionaià em imagens de aglomeradoS de galáxias. A primeira dessas ferramentas, chamada PAINTARCS, realiza simulações de objetos, com , morfologia de arcos, utilizando uma prescrição simples para a forma do arco, no qual esta é dada pela deformação de uma elipse sobre um segmento de arco de círculo, e os adiciona a imagens de aglomerados de galáxias. A segunda ferramenta, denominada ARCFITTING, utiliza a mesma expressão analítica que descreve os arcos no PAINTARCS para ajustar os parâmetros do arco a partir de uma imagem. Este método leva em conta a distribuição .de brilho dos arcos e foi desenvolvido para fornecer medidas mais robustas. Resultados do ARCFITTING mostram'que os arcos gerados pelo PAINTARCS são minimamente realistas para serem usados em simulações. Assim, uma importante aplicação dessas duas ferramentas e a simulação de arcos para os Data Challenges do Dark Energy Survey. A terceira ferramenta, chamada GALCLEAN, consiste em um método de pré-processamento de imagens de aglomerados de galáxias que subtrai de maneira automatizada a distribuição de brilho superficial das galáxias utilizando perfis de Sérsic. Esta ferramenta tem por objetivo evidenciar a eventual presença de arcos gravitacionais em meio a outros objetos da imagem. Para determinar a eficiência e o impacto do GALCLEAN realizamos um estudo sistemático da detectabilidade dos arcos em imagens simulàas de aglomerados de galáxias onde arcos com parâmetros conhecidos diferentes foram adicionados com o algOritmo PAINTARCS. Os resultados deste estudo indicam que o GALCLEAN apresenta um impacto maior na detectabilidade dos arcos para os casos de arcos de magnitudes mais tênues e aglomeradbs de alto desvio para o vermelho, embora introduza um grande número de detecções espúrias. O GALCLEAN também gera um catálogo com os parâmetros morfológicos e estruturais das galáxias subtraídas, que tem aplicações no estudo da estrutura e evolução das galáxias. Também apresentamos neste trabalho a sondagem de arcos gravItacionais SOAR Gravitational Arc Survey, um levantamento de 47 aglomerados de galáxias que tem como objetivo • de buscar novos sistemas de lentes gravitacionais e estudar a variação da eficiência do lenteamento forte em função do desvio para o vermelho do aglomerado, de forma a comparar os resultados com as expectativas teóricas. Os dados desta sondagem foram reduzidos e analisados. Identificamos nas imagens de 8 aglomerados, 16 candidatos a arco gravitacional. Estes resultados preliminares sugerem que 10% de aglomerados tem arcos, consistente com ' estudos anteriores da literatura.Gravitational lensing is-an important tool for a variety of astrophysical and cosmological applications. In particular, gravitational ares produced by galaxy clusters can be used to investigate their central mass distribution. Therefore, they can provide indirect information about cosmology and structure formation. Wide field surveys with excellent image quality, such as the Dark Energy Survey, will provide large samples of gravitational arc systems, aliowing statistical studies. Due to thé large areal, automated algorithms for arc detectioh and characterization are absolutely necessary. Moreover, it is extremely important to develop meti ods for pre-processing images in order to enhance these objects of interest among other objects and. the difuse light of the gala,xies that surround thern. In this work we present tools related to pre-processing, simulation and characterization of gravitational ares in galaxy cluster images. The first tool, named PAINTARCS, simulates objects with arc morphology, using a sirnple prescription for the arc shape, which is given by the deformation of an ellipse into an are circle segment, and adds them to galaxy cluster images. The second tool, called ARcEITTING, uses the same analytical expression for arc shape as PAINTARcs to fit the arc parameters from an image. This rnethod takes into account the surface brightness distribution of ares and it was developed to provide more robust measurements. Results from ARGFITTING show that the ares created by PAINTARCS are minimally realistic to- be used in simulatiOns. Therefore, an important application of these tools is the simulation of ares for the Dark Energy Survey Data"Challen.ges. The third tool, .named GALCLEAN, consists in a method for pre-processing galaxy cluster images by subtracting the surface brightness distribution of galaxies in an automated way using Sérsic profiles. Gravitational lensing is-an important tool for a variety of astrophysical and cosmological applications. In particular, gravitational ares produced by galaxy clusters can be used to investigate their central mass distribution. Therefore, they can provide indirect information about cosmology and structure formation. Wide field surveys with excellent image quality, such as the Dark Energy Survey, will provide large samples of gravitational arc systems, aliowing statistical studies. Due to thé large areal, automated algorithms for arc detectioh and characterization are absolutely necessary. Moreover, it is extremely important to develop meti ods for pre-processing images in order to enhance these objects of interest among other objects and. the difuse light of the gala,xies that surround thern. In this work we present tools related to pre-processing, simulation and characterization of gravitational ares in galaxy cluster images. The first tool, named PAINTARCS, simulates objects with arc morphology, using a sirnple prescription for the arc shape, which is given by the deformation of an ellipse into an are circle segment, and adds them to galaxy cluster images. The second tool, called ARcEITTING, uses the same analytical expression for arc shape as PAINTARcs to fit the arc parameters from an image. This rnethod takes into account the surface brightness distribution of ares and it was developed to provide more robust measurements. Results from ARGFITTING show that the ares created by PAINTARCS are minimally realistic to- be used in simulatiOns. Therefore, an important application of these tools is the simulation of ares for the Dark Energy Survey Data"Challen.ges. The third tool, .named GALCLEAN, consists in a method for pre-processing galaxy cluster images by subtracting the surface brightness distribution of galaxies in an automated way using Sérsic profiles.application/pdfporLentes gravitacionaisAglomerados de galaxiasSimulaçãoFotometriaArcos gravitacionais em aglomerados de galáxias : detecção, caracterização e modelamentoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de FísicaPrograma de Pós-Graduação em FísicaPorto Alegre, BR-RS2012doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000882140.pdf000882140.pdfTexto completoapplication/pdf13461932http://www.lume.ufrgs.br/bitstream/10183/72088/1/000882140.pdf9fc807ddc5efd62e8b4e6b36725d02dfMD51TEXT000882140.pdf.txt000882140.pdf.txtExtracted Texttext/plain362205http://www.lume.ufrgs.br/bitstream/10183/72088/2/000882140.pdf.txtfc80538802071a7b11b856bb8033308cMD52THUMBNAIL000882140.pdf.jpg000882140.pdf.jpgGenerated Thumbnailimage/jpeg1248http://www.lume.ufrgs.br/bitstream/10183/72088/3/000882140.pdf.jpg05012452ca332cd05662d15af8973fd6MD5310183/720882023-06-16 03:31:26.29951oai:www.lume.ufrgs.br:10183/72088Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532023-06-16T06:31:26Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Arcos gravitacionais em aglomerados de galáxias : detecção, caracterização e modelamento
title Arcos gravitacionais em aglomerados de galáxias : detecção, caracterização e modelamento
spellingShingle Arcos gravitacionais em aglomerados de galáxias : detecção, caracterização e modelamento
Furlanetto, Cristina
Lentes gravitacionais
Aglomerados de galaxias
Simulação
Fotometria
title_short Arcos gravitacionais em aglomerados de galáxias : detecção, caracterização e modelamento
title_full Arcos gravitacionais em aglomerados de galáxias : detecção, caracterização e modelamento
title_fullStr Arcos gravitacionais em aglomerados de galáxias : detecção, caracterização e modelamento
title_full_unstemmed Arcos gravitacionais em aglomerados de galáxias : detecção, caracterização e modelamento
title_sort Arcos gravitacionais em aglomerados de galáxias : detecção, caracterização e modelamento
author Furlanetto, Cristina
author_facet Furlanetto, Cristina
author_role author
dc.contributor.author.fl_str_mv Furlanetto, Cristina
dc.contributor.advisor1.fl_str_mv Santiago, Basilio Xavier
dc.contributor.advisor-co1.fl_str_mv Makler, Martín
contributor_str_mv Santiago, Basilio Xavier
Makler, Martín
dc.subject.por.fl_str_mv Lentes gravitacionais
Aglomerados de galaxias
Simulação
Fotometria
topic Lentes gravitacionais
Aglomerados de galaxias
Simulação
Fotometria
description Lentes gravitacionais são uma ferramenta importante para uma variedade de,aplicações astrofísicas e cosmológicas. Em particular, arcos gravitacionais' produzidos por aglomerados de galáxias podem ser utilizados para investigar a distribuição central, de massa destes. Desta forma, eles podem fornecer informações indiretas sobre a cosmologia e a formação de estruturas. Sondagens futuras de grande campo com.excelente qualidade de imagem, como o Dark Energy Survey, fornecerão grandes amostras de sistemas de arcos gravitacionais, permitindo a realização de vários estudos estatísticos. Devido às grandes áreas, algoritmos de detecção e caracterização de arcos são absolutamente necessários. Além disso, é extremamente importante desenvolver métodos de pré-processamento de imagens que evidenciem estes objetos • de interesse em meio a outros objetos e à luz difusa das galáxias que estão à' sua volta. Neste trabalho apresentamos ferramentas relacionadas ao pré-processamento, simulação e caracterização de arcos gravitacionaià em imagens de aglomeradoS de galáxias. A primeira dessas ferramentas, chamada PAINTARCS, realiza simulações de objetos, com , morfologia de arcos, utilizando uma prescrição simples para a forma do arco, no qual esta é dada pela deformação de uma elipse sobre um segmento de arco de círculo, e os adiciona a imagens de aglomerados de galáxias. A segunda ferramenta, denominada ARCFITTING, utiliza a mesma expressão analítica que descreve os arcos no PAINTARCS para ajustar os parâmetros do arco a partir de uma imagem. Este método leva em conta a distribuição .de brilho dos arcos e foi desenvolvido para fornecer medidas mais robustas. Resultados do ARCFITTING mostram'que os arcos gerados pelo PAINTARCS são minimamente realistas para serem usados em simulações. Assim, uma importante aplicação dessas duas ferramentas e a simulação de arcos para os Data Challenges do Dark Energy Survey. A terceira ferramenta, chamada GALCLEAN, consiste em um método de pré-processamento de imagens de aglomerados de galáxias que subtrai de maneira automatizada a distribuição de brilho superficial das galáxias utilizando perfis de Sérsic. Esta ferramenta tem por objetivo evidenciar a eventual presença de arcos gravitacionais em meio a outros objetos da imagem. Para determinar a eficiência e o impacto do GALCLEAN realizamos um estudo sistemático da detectabilidade dos arcos em imagens simulàas de aglomerados de galáxias onde arcos com parâmetros conhecidos diferentes foram adicionados com o algOritmo PAINTARCS. Os resultados deste estudo indicam que o GALCLEAN apresenta um impacto maior na detectabilidade dos arcos para os casos de arcos de magnitudes mais tênues e aglomeradbs de alto desvio para o vermelho, embora introduza um grande número de detecções espúrias. O GALCLEAN também gera um catálogo com os parâmetros morfológicos e estruturais das galáxias subtraídas, que tem aplicações no estudo da estrutura e evolução das galáxias. Também apresentamos neste trabalho a sondagem de arcos gravItacionais SOAR Gravitational Arc Survey, um levantamento de 47 aglomerados de galáxias que tem como objetivo • de buscar novos sistemas de lentes gravitacionais e estudar a variação da eficiência do lenteamento forte em função do desvio para o vermelho do aglomerado, de forma a comparar os resultados com as expectativas teóricas. Os dados desta sondagem foram reduzidos e analisados. Identificamos nas imagens de 8 aglomerados, 16 candidatos a arco gravitacional. Estes resultados preliminares sugerem que 10% de aglomerados tem arcos, consistente com ' estudos anteriores da literatura.
publishDate 2012
dc.date.issued.fl_str_mv 2012
dc.date.accessioned.fl_str_mv 2013-05-30T01:44:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/72088
dc.identifier.nrb.pt_BR.fl_str_mv 000882140
url http://hdl.handle.net/10183/72088
identifier_str_mv 000882140
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/72088/1/000882140.pdf
http://www.lume.ufrgs.br/bitstream/10183/72088/2/000882140.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/72088/3/000882140.pdf.jpg
bitstream.checksum.fl_str_mv 9fc807ddc5efd62e8b4e6b36725d02df
fc80538802071a7b11b856bb8033308c
05012452ca332cd05662d15af8973fd6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085257817358336