Modelos hierárquicos de ocupação para Pontoporia blainvillei (Cetacea: pontoporiidae) na costa do Brasil

Detalhes bibliográficos
Autor(a) principal: Ferreira, Matheus Kingeski
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/180700
Resumo: Conhecer a distribuição geográfica das espécies é primordial para a tomada de ações efetivas de conservação. Modelos de ocupação são ferramentas importantes para estimar a distribuição das espécies, especialmente quando as informações são incompletas, como é o caso de muitas espécies ameaçadas ou em áreas ainda insuficientemente amostradas. O objetivo deste estudo é ampliar e refinar o conhecimento sobre a distribuição geográfica da toninha, Pontoporia blainvillei, um pequeno cetáceo ameaçado de extinção restrito às águas costeiras do Atlântico Sul ocidental, através de modelos de ocupação. Foram realizadas amostragens aéreas com 4 observadores independentes, em 2058 sítios de 4x4km na distribuição da espécie no Brasil. Foram utilizadas cinco covariáveis de detecção (transparência da água, escala Beaufort, reflexo solar, posição dos amostradores e número de amostradores) e três covariáveis de ocupação (batimetria, temperatura média e produtividade primária) com índices de correlação de Pearson menor que 0,7. Todas as covariáveis contínuas foram estandardizadas com média zero e desvio padrão igual a um. Os modelos de ocupação com autocorrealação espacial foram estimados com Inferência Bayesiana utilizando priors ‘vagos’ (média zero e variância 1.0E6). Em apenas 75 sítios foram detectadas toninhas. A probabilidade de detecção média foi de 0.23 (CRI 0.006 a 0.51), onde as covariáveis Beaufort (efeito negativo), reflexo solar (efeito negativo) e transparência da água (efeito positivo) apresentaram efeitos significativos. A média estimada de ocupação foi de 0,066 (CRI 0,01 a 0,31). As covariáveis batimetria e a temperatura média apresentaram efeitos positivos e negativos sobre o processo de ocupação, respectivamente. Espacialmente o modelo prevê três áreas com altas probabilidades de ocupação aparentemente disjuntas: a) costa norte do Rio de Janeiro; b) costas norte de 3 Santa catarina até São Paulo; c) costa do Rio Grande do Sul. Assim, agregamos importantes informações para a conservação da espécie e realização de novos estudos, apontando onde podemos encontrar maiores probabilidade de ocupação na costa do Brasil e covariáveis que determinam a ocupação e a detecção da espécie.
id URGS_f47e9d4403f337271dfb6b72a6559cc9
oai_identifier_str oai:www.lume.ufrgs.br:10183/180700
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Ferreira, Matheus KingeskiMartins, Márcio BorgesRodrigues, Murilo Guimarães2018-07-28T02:46:04Z2018http://hdl.handle.net/10183/180700001068701Conhecer a distribuição geográfica das espécies é primordial para a tomada de ações efetivas de conservação. Modelos de ocupação são ferramentas importantes para estimar a distribuição das espécies, especialmente quando as informações são incompletas, como é o caso de muitas espécies ameaçadas ou em áreas ainda insuficientemente amostradas. O objetivo deste estudo é ampliar e refinar o conhecimento sobre a distribuição geográfica da toninha, Pontoporia blainvillei, um pequeno cetáceo ameaçado de extinção restrito às águas costeiras do Atlântico Sul ocidental, através de modelos de ocupação. Foram realizadas amostragens aéreas com 4 observadores independentes, em 2058 sítios de 4x4km na distribuição da espécie no Brasil. Foram utilizadas cinco covariáveis de detecção (transparência da água, escala Beaufort, reflexo solar, posição dos amostradores e número de amostradores) e três covariáveis de ocupação (batimetria, temperatura média e produtividade primária) com índices de correlação de Pearson menor que 0,7. Todas as covariáveis contínuas foram estandardizadas com média zero e desvio padrão igual a um. Os modelos de ocupação com autocorrealação espacial foram estimados com Inferência Bayesiana utilizando priors ‘vagos’ (média zero e variância 1.0E6). Em apenas 75 sítios foram detectadas toninhas. A probabilidade de detecção média foi de 0.23 (CRI 0.006 a 0.51), onde as covariáveis Beaufort (efeito negativo), reflexo solar (efeito negativo) e transparência da água (efeito positivo) apresentaram efeitos significativos. A média estimada de ocupação foi de 0,066 (CRI 0,01 a 0,31). As covariáveis batimetria e a temperatura média apresentaram efeitos positivos e negativos sobre o processo de ocupação, respectivamente. Espacialmente o modelo prevê três áreas com altas probabilidades de ocupação aparentemente disjuntas: a) costa norte do Rio de Janeiro; b) costas norte de 3 Santa catarina até São Paulo; c) costa do Rio Grande do Sul. Assim, agregamos importantes informações para a conservação da espécie e realização de novos estudos, apontando onde podemos encontrar maiores probabilidade de ocupação na costa do Brasil e covariáveis que determinam a ocupação e a detecção da espécie.Knowing the geographic distribution of a species is essential for taking effective conservation actions. Occupation Models are important tools for estimating species distribution, especially when information is incomplete, as is the case with many endangered species or in under-sampled areas. The aim of this study is to expand and refine the knowledge about the geographic distribution of the franciscana, Pontoporia blainvillei, a threatened small cetacean restricted to the coastal waters of the western South Atlantic, through Occupation Models. Aerial samplings were carried out with 4 independent observers, in 2058 sites of 4x4km across the distribution of the species in Brazilian waters. Five detection covariates were used (water transparency, Beaufort scale, solar reflectance, observer position and number of observers) and three covariates of occupation (bathymetry, mean temperature and primary productivity) with Pearson correlation indices less than 0.7. All continuous covariates were standardized with mean zero and standard deviation equal to one. Occupancy Models with spatial autocorrection were estimated using Bayesian Inference using 'vague' priors (zero mean and variance 1.0E6). Franciscana was detected only in 75 sites. The average detection probability 4 was 0.23 (CRI 0.006 to 0.51), where Beaufort (negative effect), solar reflex (negative effect) and water transparency (positive effect) covariables had significant effects. The estimated mean occupancy was 0.066 (CRI 0.01 to 0.31). The bathymetry and the mean temperature covariables had positive and negative effects on the occupation process, respectively. Spatially the model predicts three apparently disjunct areas with high probability of occupation: a) north coast of Rio de Janeiro; b) north coasts of Santa Catarina to São Paulo; c) coast of Rio Grande do Sul. Thus, we add important information for the conservation of species and new studies, pointing out where we can find greater likelihood of occupation on the coast of Brazil and covariates that determine the occupation and the detection of the species.application/pdfporInferência bayesianaPontoporia blainvilleiCetáceosFranciscanaAtlantic South WestSpatial autocorrelationBayesian InferenceOccupation ModelsModelos hierárquicos de ocupação para Pontoporia blainvillei (Cetacea: pontoporiidae) na costa do Brasilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de BiociênciasPrograma de Pós-Graduação em Biologia AnimalPorto Alegre, BR-RS2018mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001068701.pdf.txt001068701.pdf.txtExtracted Texttext/plain112935http://www.lume.ufrgs.br/bitstream/10183/180700/2/001068701.pdf.txted6b59f7a326b0d55909267fa1c52d02MD52ORIGINAL001068701.pdfTexto completoapplication/pdf1840188http://www.lume.ufrgs.br/bitstream/10183/180700/1/001068701.pdff99dc44c25f65f41ca8125f3ed7ce3f1MD5110183/1807002022-08-24 04:45:45.588323oai:www.lume.ufrgs.br:10183/180700Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532022-08-24T07:45:45Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Modelos hierárquicos de ocupação para Pontoporia blainvillei (Cetacea: pontoporiidae) na costa do Brasil
title Modelos hierárquicos de ocupação para Pontoporia blainvillei (Cetacea: pontoporiidae) na costa do Brasil
spellingShingle Modelos hierárquicos de ocupação para Pontoporia blainvillei (Cetacea: pontoporiidae) na costa do Brasil
Ferreira, Matheus Kingeski
Inferência bayesiana
Pontoporia blainvillei
Cetáceos
Franciscana
Atlantic South West
Spatial autocorrelation
Bayesian Inference
Occupation Models
title_short Modelos hierárquicos de ocupação para Pontoporia blainvillei (Cetacea: pontoporiidae) na costa do Brasil
title_full Modelos hierárquicos de ocupação para Pontoporia blainvillei (Cetacea: pontoporiidae) na costa do Brasil
title_fullStr Modelos hierárquicos de ocupação para Pontoporia blainvillei (Cetacea: pontoporiidae) na costa do Brasil
title_full_unstemmed Modelos hierárquicos de ocupação para Pontoporia blainvillei (Cetacea: pontoporiidae) na costa do Brasil
title_sort Modelos hierárquicos de ocupação para Pontoporia blainvillei (Cetacea: pontoporiidae) na costa do Brasil
author Ferreira, Matheus Kingeski
author_facet Ferreira, Matheus Kingeski
author_role author
dc.contributor.author.fl_str_mv Ferreira, Matheus Kingeski
dc.contributor.advisor1.fl_str_mv Martins, Márcio Borges
dc.contributor.advisor-co1.fl_str_mv Rodrigues, Murilo Guimarães
contributor_str_mv Martins, Márcio Borges
Rodrigues, Murilo Guimarães
dc.subject.por.fl_str_mv Inferência bayesiana
Pontoporia blainvillei
Cetáceos
topic Inferência bayesiana
Pontoporia blainvillei
Cetáceos
Franciscana
Atlantic South West
Spatial autocorrelation
Bayesian Inference
Occupation Models
dc.subject.eng.fl_str_mv Franciscana
Atlantic South West
Spatial autocorrelation
Bayesian Inference
Occupation Models
description Conhecer a distribuição geográfica das espécies é primordial para a tomada de ações efetivas de conservação. Modelos de ocupação são ferramentas importantes para estimar a distribuição das espécies, especialmente quando as informações são incompletas, como é o caso de muitas espécies ameaçadas ou em áreas ainda insuficientemente amostradas. O objetivo deste estudo é ampliar e refinar o conhecimento sobre a distribuição geográfica da toninha, Pontoporia blainvillei, um pequeno cetáceo ameaçado de extinção restrito às águas costeiras do Atlântico Sul ocidental, através de modelos de ocupação. Foram realizadas amostragens aéreas com 4 observadores independentes, em 2058 sítios de 4x4km na distribuição da espécie no Brasil. Foram utilizadas cinco covariáveis de detecção (transparência da água, escala Beaufort, reflexo solar, posição dos amostradores e número de amostradores) e três covariáveis de ocupação (batimetria, temperatura média e produtividade primária) com índices de correlação de Pearson menor que 0,7. Todas as covariáveis contínuas foram estandardizadas com média zero e desvio padrão igual a um. Os modelos de ocupação com autocorrealação espacial foram estimados com Inferência Bayesiana utilizando priors ‘vagos’ (média zero e variância 1.0E6). Em apenas 75 sítios foram detectadas toninhas. A probabilidade de detecção média foi de 0.23 (CRI 0.006 a 0.51), onde as covariáveis Beaufort (efeito negativo), reflexo solar (efeito negativo) e transparência da água (efeito positivo) apresentaram efeitos significativos. A média estimada de ocupação foi de 0,066 (CRI 0,01 a 0,31). As covariáveis batimetria e a temperatura média apresentaram efeitos positivos e negativos sobre o processo de ocupação, respectivamente. Espacialmente o modelo prevê três áreas com altas probabilidades de ocupação aparentemente disjuntas: a) costa norte do Rio de Janeiro; b) costas norte de 3 Santa catarina até São Paulo; c) costa do Rio Grande do Sul. Assim, agregamos importantes informações para a conservação da espécie e realização de novos estudos, apontando onde podemos encontrar maiores probabilidade de ocupação na costa do Brasil e covariáveis que determinam a ocupação e a detecção da espécie.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-07-28T02:46:04Z
dc.date.issued.fl_str_mv 2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/180700
dc.identifier.nrb.pt_BR.fl_str_mv 001068701
url http://hdl.handle.net/10183/180700
identifier_str_mv 001068701
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/180700/2/001068701.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/180700/1/001068701.pdf
bitstream.checksum.fl_str_mv ed6b59f7a326b0d55909267fa1c52d02
f99dc44c25f65f41ca8125f3ed7ce3f1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085450466983936