Caracterização estrutural, química e de estado eletrônico de interfaces/superfícies de fotoanodos aplicados a water-splitting

Detalhes bibliográficos
Autor(a) principal: Santos, Gabriel Trindade dos
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/271996
Resumo: A urgência climática tem desafiado o desenvolvimento de sistemas de geração de energia verde, nos quais os dispositivos de fotoeletrocatalise (PEC) são essenciais para alcançar o êxito. O design de dispositivos PEC aplicados a reações de divisão da água é crucial para aprimorar seu desempenho. Em escala nanométrica, a eficiência do dispositivo é impulsionada pelas condições de interface e superfície. Mudanças na concentração química ou arranjos estruturais nas regiões de interface resultam em propriedades físicas únicas que podem aprimorar o desempenho do dispositivo. O conhecimento sobre o estado estrutural, químico e eletrônico de interfaces heterogêneas pode contribuir para o desenvolvimento e aprimoramento de dispositivos PEC, sendo tipicamente avaliado em escala nanométrica por imagens de microscopia eletrônica de transmissão de alta resolução (HRTEM), além de espectroscopia de perda de energia de elétrons (EELS) e espectroscopia dispersiva de energia (EDS) acopladas a um microscópio de varredura (STEM). Neste estudo, investigamos a interface de hematita com 3% de Zr4+ (Zrhematita) depositada em óxido de estanho dopado com flúor (FTO). As amostras foram preparadas por revestimento profundo e recozimento para cristalizar a Zr-hematita. Após a cristalização, adicionamos uma solução de NiFeOx para formar uma camada de material co-catalítico (Ni2+). Obteve-se a caracterização estrutural da região de interface por imagens HRTEM e simulações HRTEM, mostraram que a Zr-hematita e o FTO exibem distorções da rede cristalina. Imagens de campo de tensão foram obtidas por meio de análise de fase geométrica, ao qual foi identifica regiões de acúmulo de tensão. A análise do ambiente químico e eletrônico na interface FTO/Zr-hematita foi obtida por meio de mapas simultâneos de EELS e EDS no modo STEM e os dados processados por cálculos de análise multivariada. Os resultados mostram uma região de interface com espessura de 2,5 nm contendo uma mistura de FeSnOx. O mapa de concentração revelou que o Zr4+ segregou nas fronteiras de grãos da hematita e na região de mistura da interface, e que o Ni2+ é depositado na superfície livre da hematita, não no FTO. O Zr4+ atua no controle do tamanho de grão e ajuste da interface, enquanto o Ni2+ é um co-catalisador, melhorando a eficiência do dispositivo PEC. Os mapas de energia mostram uma mudança para Sn+4 para Sn+2 e Fe+3 para Fe+2 tanto nas regiões finas de grãos do FTO quanto na Zr-hematita, causada pela perda de oxigênio do sistema. Finalmente, foi realizado um estudo inicial da correlação entre a orientação dos grãos de Zr-hematita crescidos com a segregação de Zr4+ nas facetas dos grãos e a diferença do tensionamento na interface com o FTO.
id URGS_f771838e43ccc0ec18b2804e6136a1f5
oai_identifier_str oai:www.lume.ufrgs.br:10183/271996
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Santos, Gabriel Trindade dosFichtner, Paulo Fernando PapaleoBettini, Jefferson2024-02-16T05:00:35Z2023http://hdl.handle.net/10183/271996001193825A urgência climática tem desafiado o desenvolvimento de sistemas de geração de energia verde, nos quais os dispositivos de fotoeletrocatalise (PEC) são essenciais para alcançar o êxito. O design de dispositivos PEC aplicados a reações de divisão da água é crucial para aprimorar seu desempenho. Em escala nanométrica, a eficiência do dispositivo é impulsionada pelas condições de interface e superfície. Mudanças na concentração química ou arranjos estruturais nas regiões de interface resultam em propriedades físicas únicas que podem aprimorar o desempenho do dispositivo. O conhecimento sobre o estado estrutural, químico e eletrônico de interfaces heterogêneas pode contribuir para o desenvolvimento e aprimoramento de dispositivos PEC, sendo tipicamente avaliado em escala nanométrica por imagens de microscopia eletrônica de transmissão de alta resolução (HRTEM), além de espectroscopia de perda de energia de elétrons (EELS) e espectroscopia dispersiva de energia (EDS) acopladas a um microscópio de varredura (STEM). Neste estudo, investigamos a interface de hematita com 3% de Zr4+ (Zrhematita) depositada em óxido de estanho dopado com flúor (FTO). As amostras foram preparadas por revestimento profundo e recozimento para cristalizar a Zr-hematita. Após a cristalização, adicionamos uma solução de NiFeOx para formar uma camada de material co-catalítico (Ni2+). Obteve-se a caracterização estrutural da região de interface por imagens HRTEM e simulações HRTEM, mostraram que a Zr-hematita e o FTO exibem distorções da rede cristalina. Imagens de campo de tensão foram obtidas por meio de análise de fase geométrica, ao qual foi identifica regiões de acúmulo de tensão. A análise do ambiente químico e eletrônico na interface FTO/Zr-hematita foi obtida por meio de mapas simultâneos de EELS e EDS no modo STEM e os dados processados por cálculos de análise multivariada. Os resultados mostram uma região de interface com espessura de 2,5 nm contendo uma mistura de FeSnOx. O mapa de concentração revelou que o Zr4+ segregou nas fronteiras de grãos da hematita e na região de mistura da interface, e que o Ni2+ é depositado na superfície livre da hematita, não no FTO. O Zr4+ atua no controle do tamanho de grão e ajuste da interface, enquanto o Ni2+ é um co-catalisador, melhorando a eficiência do dispositivo PEC. Os mapas de energia mostram uma mudança para Sn+4 para Sn+2 e Fe+3 para Fe+2 tanto nas regiões finas de grãos do FTO quanto na Zr-hematita, causada pela perda de oxigênio do sistema. Finalmente, foi realizado um estudo inicial da correlação entre a orientação dos grãos de Zr-hematita crescidos com a segregação de Zr4+ nas facetas dos grãos e a diferença do tensionamento na interface com o FTO.The climate urgency has posed challenges to the development of green energy generation systems, in which photoelectrocatalysis (PEC) devices are vital for achieving success. The design of PEC devices applied to water-splitting reactions is crucial to enhance their performance. At the nanoscale, the device's efficiency is driven by interface and surface conditions. Changes in chemical concentration or structural arrangements in the interface regions lead to unique physical properties that can improve device performance. Knowledge of the structural, chemical, and electronic state of heterogeneous interfaces can contribute to the development and improvement of PEC devices, typically assessed at the nanoscale through high-resolution transmission electron microscopy (HRTEM) images, as well as electron energy loss spectroscopy (EELS) and energy-dispersive spectroscopy (EDS) coupled to a scanning transmission electron microscope (STEM). In this study, we investigated the interface of hematite with 3% Zr4+ (Zr-hematite) deposited on fluorine-doped tin oxide (FTO). The samples were prepared through deep coating and annealing to crystallize Zr-hematite. After crystallization, a NiFeOx solution was added to form a layer of co-catalytic material (Ni2+). Structural characterization of the interface region was obtained through HRTEM imaging and HRTEM simulations, revealing lattice distortions in Zr-hematite and FTO. Stress field images were obtained through geometric phase analysis (GPA), identifying regions of stress accumulation. Chemical and electronic analysis at the FTO/Zr-hematite interface was conducted through simultaneous STEM-EELS-EDS mapping, and the data were processed using multivariate analysis calculations. The results show a 2.5 nm thick interface region containing a mixture of FeSnOx. The concentration map revealed that Zr4+ segregated at the grain boundaries of hematite and in the mixing region of the interface, while Ni2+ was deposited on the free surface of hematite, not on FTO. Zr4+ influences grain size control and interface adjustment, while Ni2+ acts as a co-catalyst, improving the efficiency of the PEC device. Energy maps indicate a shift from Sn4+ to Sn2+ and Fe3+ to Fe2+ in both the fine grain regions of FTO and Zr-hematite, caused by the loss of oxygen from the system. Finally, an initial study was conducted on the correlation between the morphology of grown Zrhematite grains, the segregation of Zr4+ on grain facets, and the difference in stress at the interface with FTO.application/pdfporHematitaMicroscopia eletrônica de transmissãoCaracterização estrutural, química e de estado eletrônico de interfaces/superfícies de fotoanodos aplicados a water-splittinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulEscola de EngenhariaPrograma de Pós-Graduação em Engenharia de Minas, Metalúrgica e de MateriaisPorto Alegre, BR-RS2023doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001193825.pdf.txt001193825.pdf.txtExtracted Texttext/plain237356http://www.lume.ufrgs.br/bitstream/10183/271996/2/001193825.pdf.txta2cef91d10c3006a31d063e885494284MD52ORIGINAL001193825.pdfTexto completoapplication/pdf6557080http://www.lume.ufrgs.br/bitstream/10183/271996/1/001193825.pdf8c4a1c783093239858e36231fc9753bfMD5110183/2719962024-02-17 05:55:43.226497oai:www.lume.ufrgs.br:10183/271996Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532024-02-17T07:55:43Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Caracterização estrutural, química e de estado eletrônico de interfaces/superfícies de fotoanodos aplicados a water-splitting
title Caracterização estrutural, química e de estado eletrônico de interfaces/superfícies de fotoanodos aplicados a water-splitting
spellingShingle Caracterização estrutural, química e de estado eletrônico de interfaces/superfícies de fotoanodos aplicados a water-splitting
Santos, Gabriel Trindade dos
Hematita
Microscopia eletrônica de transmissão
title_short Caracterização estrutural, química e de estado eletrônico de interfaces/superfícies de fotoanodos aplicados a water-splitting
title_full Caracterização estrutural, química e de estado eletrônico de interfaces/superfícies de fotoanodos aplicados a water-splitting
title_fullStr Caracterização estrutural, química e de estado eletrônico de interfaces/superfícies de fotoanodos aplicados a water-splitting
title_full_unstemmed Caracterização estrutural, química e de estado eletrônico de interfaces/superfícies de fotoanodos aplicados a water-splitting
title_sort Caracterização estrutural, química e de estado eletrônico de interfaces/superfícies de fotoanodos aplicados a water-splitting
author Santos, Gabriel Trindade dos
author_facet Santos, Gabriel Trindade dos
author_role author
dc.contributor.author.fl_str_mv Santos, Gabriel Trindade dos
dc.contributor.advisor1.fl_str_mv Fichtner, Paulo Fernando Papaleo
dc.contributor.advisor-co1.fl_str_mv Bettini, Jefferson
contributor_str_mv Fichtner, Paulo Fernando Papaleo
Bettini, Jefferson
dc.subject.por.fl_str_mv Hematita
Microscopia eletrônica de transmissão
topic Hematita
Microscopia eletrônica de transmissão
description A urgência climática tem desafiado o desenvolvimento de sistemas de geração de energia verde, nos quais os dispositivos de fotoeletrocatalise (PEC) são essenciais para alcançar o êxito. O design de dispositivos PEC aplicados a reações de divisão da água é crucial para aprimorar seu desempenho. Em escala nanométrica, a eficiência do dispositivo é impulsionada pelas condições de interface e superfície. Mudanças na concentração química ou arranjos estruturais nas regiões de interface resultam em propriedades físicas únicas que podem aprimorar o desempenho do dispositivo. O conhecimento sobre o estado estrutural, químico e eletrônico de interfaces heterogêneas pode contribuir para o desenvolvimento e aprimoramento de dispositivos PEC, sendo tipicamente avaliado em escala nanométrica por imagens de microscopia eletrônica de transmissão de alta resolução (HRTEM), além de espectroscopia de perda de energia de elétrons (EELS) e espectroscopia dispersiva de energia (EDS) acopladas a um microscópio de varredura (STEM). Neste estudo, investigamos a interface de hematita com 3% de Zr4+ (Zrhematita) depositada em óxido de estanho dopado com flúor (FTO). As amostras foram preparadas por revestimento profundo e recozimento para cristalizar a Zr-hematita. Após a cristalização, adicionamos uma solução de NiFeOx para formar uma camada de material co-catalítico (Ni2+). Obteve-se a caracterização estrutural da região de interface por imagens HRTEM e simulações HRTEM, mostraram que a Zr-hematita e o FTO exibem distorções da rede cristalina. Imagens de campo de tensão foram obtidas por meio de análise de fase geométrica, ao qual foi identifica regiões de acúmulo de tensão. A análise do ambiente químico e eletrônico na interface FTO/Zr-hematita foi obtida por meio de mapas simultâneos de EELS e EDS no modo STEM e os dados processados por cálculos de análise multivariada. Os resultados mostram uma região de interface com espessura de 2,5 nm contendo uma mistura de FeSnOx. O mapa de concentração revelou que o Zr4+ segregou nas fronteiras de grãos da hematita e na região de mistura da interface, e que o Ni2+ é depositado na superfície livre da hematita, não no FTO. O Zr4+ atua no controle do tamanho de grão e ajuste da interface, enquanto o Ni2+ é um co-catalisador, melhorando a eficiência do dispositivo PEC. Os mapas de energia mostram uma mudança para Sn+4 para Sn+2 e Fe+3 para Fe+2 tanto nas regiões finas de grãos do FTO quanto na Zr-hematita, causada pela perda de oxigênio do sistema. Finalmente, foi realizado um estudo inicial da correlação entre a orientação dos grãos de Zr-hematita crescidos com a segregação de Zr4+ nas facetas dos grãos e a diferença do tensionamento na interface com o FTO.
publishDate 2023
dc.date.issued.fl_str_mv 2023
dc.date.accessioned.fl_str_mv 2024-02-16T05:00:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/271996
dc.identifier.nrb.pt_BR.fl_str_mv 001193825
url http://hdl.handle.net/10183/271996
identifier_str_mv 001193825
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/271996/2/001193825.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/271996/1/001193825.pdf
bitstream.checksum.fl_str_mv a2cef91d10c3006a31d063e885494284
8c4a1c783093239858e36231fc9753bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085639385776128