Algoritmo inteligente para geração de rotas em smart cities
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7856 |
Resumo: | The traffic congestion in large urban centers is one of the main problems for people who need to drive daily. The concept of smart cities has made possible the development of innumerable innovative solutions that, through technology, share and disseminate various information in real time to the population. However, these problems have numerous variables that make it difficult to resolve them in satisfactory time. In this way, this work proposes an algorithm that uses Points of Reference to determine rides in large-scale road networks considering 3 objectives (travel time, distance and number of traffic lights) in a satisfactory ti using an evolutionary multiobjective algorithm. In addition, a new mutation operator that guarantees only minor changes in individuals is proposed. The proposed approach is tested by performing simulations on a map of a large city with different levels of traffic congestion using Openstreetmap data. Finally, the results of the simulations are compared with solutions generated by the Dijkstra’s algorithm that represent the lowest theoretical value for each objective. Five sets of simulations were carried out with 3 scenarios each with different levels of traffic congestion. The results showed that the algorithm found viable trade-offs, highlighting the best results for the highest levels of congestion with average losses that did not exceed 20% in 2 of the 3 objectives in most of the simulations when compared with the theoretical minimum values. As for the computational time spent, in 2 groups the algorithm took on average 3 seconds to find the best routes and 6 seconds on average for the other 3 groups. In this way, it was concluded that the algorithm was able to generate viable trade-offs in a good computational time considering the environment in which it was executed. These results also reflected the efficiency of the proposed mutation operator. |
id |
URPE_0bf732991def10f2ea4373b3c5f4c296 |
---|---|
oai_identifier_str |
oai:tede2:tede2/7856 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
GARROZI, CíceroGARROZI, CíceroFERREIRA, Tiago Alessandro EspínolaARAÚJO, Aluizio Fausto Ribeirohttp://lattes.cnpq.br/7738769354541052MORAIS, Renê Douglas Nobre de2019-02-19T14:31:58Z2018-08-27MORAIS, Renê Douglas Nobre de. Algoritmo inteligente para geração de rotas em smart cities. 2018. 113 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7856The traffic congestion in large urban centers is one of the main problems for people who need to drive daily. The concept of smart cities has made possible the development of innumerable innovative solutions that, through technology, share and disseminate various information in real time to the population. However, these problems have numerous variables that make it difficult to resolve them in satisfactory time. In this way, this work proposes an algorithm that uses Points of Reference to determine rides in large-scale road networks considering 3 objectives (travel time, distance and number of traffic lights) in a satisfactory ti using an evolutionary multiobjective algorithm. In addition, a new mutation operator that guarantees only minor changes in individuals is proposed. The proposed approach is tested by performing simulations on a map of a large city with different levels of traffic congestion using Openstreetmap data. Finally, the results of the simulations are compared with solutions generated by the Dijkstra’s algorithm that represent the lowest theoretical value for each objective. Five sets of simulations were carried out with 3 scenarios each with different levels of traffic congestion. The results showed that the algorithm found viable trade-offs, highlighting the best results for the highest levels of congestion with average losses that did not exceed 20% in 2 of the 3 objectives in most of the simulations when compared with the theoretical minimum values. As for the computational time spent, in 2 groups the algorithm took on average 3 seconds to find the best routes and 6 seconds on average for the other 3 groups. In this way, it was concluded that the algorithm was able to generate viable trade-offs in a good computational time considering the environment in which it was executed. These results also reflected the efficiency of the proposed mutation operator.O congestionamento nos grandes centros urbanos é um dos principais problemas para as pessoas que necessitam se locomover diariamente seja utilizando o transporte público ou individual. O surgimento do conceito de cidades inteligentes tornou possível o desenvolvimento de inúmeras soluções inovadoras que, através da tecnologia, compartilham e disseminam diversas informações em tempo real para a população. Porém, à medida que o problema é tomado por inúmeras variáveis, torna-se cada vez mais difícil oferecer soluções viáveis e em tempo hábil. Desta forma, este trabalho propõe um algoritmo que utiliza Pontos de Referência para determinação de passeios em redes viárias de larga-escala considerando 3 objetivos (tempo de viagem, distância e número de semáforos) em tempo hábil utilizando um algoritmo evolucionário multiobjetivo. Além disso, um novo operador de mutação que garante apenas pequenas alterações nos indivíduos é proposto. A abordagem proposta é testada realizando simulações em um mapa de uma cidade grande com diferentes níveis de congestionamento utilizando os dados do Openstreetmap. Por fim, os resultados das simulações são comparados com soluções geradas pelo algoritmo de Dijkstra que representam o menor valor teórico para cada objetivo. Foram realizados 5 grupos de simulações com 3 cenários cada com diferentes níveis de congestionamento. Os resultados mostraram que o algoritmo encontrou diversos trade-offs, destacando os melhores resultados para os maiores níveis de congestionamento com perdas médias que não ultrapassaram os 20% em 2 dos 3 objetivos em grande parte das simulações. Quanto ao tempo computacional gasto, em 2 grupos o algoritmo demorou em média 3 segundos para encontrar as melhores rotas e 6 segundos em média para os outros 3 grupos. Desta forma, concluiu-se que o algoritmo foi capaz de gerar trade-offs viáveis em um bom tempo computacional considerando o ambiente em que foi executado. Estes resultados também refletiram a eficiência do operador de mutação proposto.Submitted by Mario BC (mario@bc.ufrpe.br) on 2019-02-19T14:31:58Z No. of bitstreams: 1 Rene Douglas Nobre de Morais.pdf: 5530207 bytes, checksum: 5a5d37004be289baba8e3151b581eb38 (MD5)Made available in DSpace on 2019-02-19T14:31:58Z (GMT). No. of bitstreams: 1 Rene Douglas Nobre de Morais.pdf: 5530207 bytes, checksum: 5a5d37004be289baba8e3151b581eb38 (MD5) Previous issue date: 2018-08-27application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Informática AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaCidade inteligenteGeração de rotaTráfego de veículoComputação evolucionáriaCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOAlgoritmo inteligente para geração de rotas em smart citiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-8268485641417162699600600600-67745551403961205013671711205811204509info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALRene Douglas Nobre de Morais.pdfRene Douglas Nobre de Morais.pdfapplication/pdf5530207http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7856/2/Rene+Douglas+Nobre+de+Morais.pdf5a5d37004be289baba8e3151b581eb38MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7856/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/78562019-02-19 11:31:58.15oai:tede2:tede2/7856Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:36:12.613765Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Algoritmo inteligente para geração de rotas em smart cities |
title |
Algoritmo inteligente para geração de rotas em smart cities |
spellingShingle |
Algoritmo inteligente para geração de rotas em smart cities MORAIS, Renê Douglas Nobre de Cidade inteligente Geração de rota Tráfego de veículo Computação evolucionária CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Algoritmo inteligente para geração de rotas em smart cities |
title_full |
Algoritmo inteligente para geração de rotas em smart cities |
title_fullStr |
Algoritmo inteligente para geração de rotas em smart cities |
title_full_unstemmed |
Algoritmo inteligente para geração de rotas em smart cities |
title_sort |
Algoritmo inteligente para geração de rotas em smart cities |
author |
MORAIS, Renê Douglas Nobre de |
author_facet |
MORAIS, Renê Douglas Nobre de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
GARROZI, Cícero |
dc.contributor.referee1.fl_str_mv |
GARROZI, Cícero |
dc.contributor.referee2.fl_str_mv |
FERREIRA, Tiago Alessandro Espínola |
dc.contributor.referee3.fl_str_mv |
ARAÚJO, Aluizio Fausto Ribeiro |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7738769354541052 |
dc.contributor.author.fl_str_mv |
MORAIS, Renê Douglas Nobre de |
contributor_str_mv |
GARROZI, Cícero GARROZI, Cícero FERREIRA, Tiago Alessandro Espínola ARAÚJO, Aluizio Fausto Ribeiro |
dc.subject.por.fl_str_mv |
Cidade inteligente Geração de rota Tráfego de veículo Computação evolucionária |
topic |
Cidade inteligente Geração de rota Tráfego de veículo Computação evolucionária CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
The traffic congestion in large urban centers is one of the main problems for people who need to drive daily. The concept of smart cities has made possible the development of innumerable innovative solutions that, through technology, share and disseminate various information in real time to the population. However, these problems have numerous variables that make it difficult to resolve them in satisfactory time. In this way, this work proposes an algorithm that uses Points of Reference to determine rides in large-scale road networks considering 3 objectives (travel time, distance and number of traffic lights) in a satisfactory ti using an evolutionary multiobjective algorithm. In addition, a new mutation operator that guarantees only minor changes in individuals is proposed. The proposed approach is tested by performing simulations on a map of a large city with different levels of traffic congestion using Openstreetmap data. Finally, the results of the simulations are compared with solutions generated by the Dijkstra’s algorithm that represent the lowest theoretical value for each objective. Five sets of simulations were carried out with 3 scenarios each with different levels of traffic congestion. The results showed that the algorithm found viable trade-offs, highlighting the best results for the highest levels of congestion with average losses that did not exceed 20% in 2 of the 3 objectives in most of the simulations when compared with the theoretical minimum values. As for the computational time spent, in 2 groups the algorithm took on average 3 seconds to find the best routes and 6 seconds on average for the other 3 groups. In this way, it was concluded that the algorithm was able to generate viable trade-offs in a good computational time considering the environment in which it was executed. These results also reflected the efficiency of the proposed mutation operator. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-08-27 |
dc.date.accessioned.fl_str_mv |
2019-02-19T14:31:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MORAIS, Renê Douglas Nobre de. Algoritmo inteligente para geração de rotas em smart cities. 2018. 113 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7856 |
identifier_str_mv |
MORAIS, Renê Douglas Nobre de. Algoritmo inteligente para geração de rotas em smart cities. 2018. 113 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7856 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-8268485641417162699 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
-6774555140396120501 |
dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Informática Aplicada |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Estatística e Informática |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7856/2/Rene+Douglas+Nobre+de+Morais.pdf http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7856/1/license.txt |
bitstream.checksum.fl_str_mv |
5a5d37004be289baba8e3151b581eb38 bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102255820472320 |