Algoritmo inteligente para geração de rotas em smart cities

Detalhes bibliográficos
Autor(a) principal: MORAIS, Renê Douglas Nobre de
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7856
Resumo: The traffic congestion in large urban centers is one of the main problems for people who need to drive daily. The concept of smart cities has made possible the development of innumerable innovative solutions that, through technology, share and disseminate various information in real time to the population. However, these problems have numerous variables that make it difficult to resolve them in satisfactory time. In this way, this work proposes an algorithm that uses Points of Reference to determine rides in large-scale road networks considering 3 objectives (travel time, distance and number of traffic lights) in a satisfactory ti using an evolutionary multiobjective algorithm. In addition, a new mutation operator that guarantees only minor changes in individuals is proposed. The proposed approach is tested by performing simulations on a map of a large city with different levels of traffic congestion using Openstreetmap data. Finally, the results of the simulations are compared with solutions generated by the Dijkstra’s algorithm that represent the lowest theoretical value for each objective. Five sets of simulations were carried out with 3 scenarios each with different levels of traffic congestion. The results showed that the algorithm found viable trade-offs, highlighting the best results for the highest levels of congestion with average losses that did not exceed 20% in 2 of the 3 objectives in most of the simulations when compared with the theoretical minimum values. As for the computational time spent, in 2 groups the algorithm took on average 3 seconds to find the best routes and 6 seconds on average for the other 3 groups. In this way, it was concluded that the algorithm was able to generate viable trade-offs in a good computational time considering the environment in which it was executed. These results also reflected the efficiency of the proposed mutation operator.
id URPE_0bf732991def10f2ea4373b3c5f4c296
oai_identifier_str oai:tede2:tede2/7856
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling GARROZI, CíceroGARROZI, CíceroFERREIRA, Tiago Alessandro EspínolaARAÚJO, Aluizio Fausto Ribeirohttp://lattes.cnpq.br/7738769354541052MORAIS, Renê Douglas Nobre de2019-02-19T14:31:58Z2018-08-27MORAIS, Renê Douglas Nobre de. Algoritmo inteligente para geração de rotas em smart cities. 2018. 113 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7856The traffic congestion in large urban centers is one of the main problems for people who need to drive daily. The concept of smart cities has made possible the development of innumerable innovative solutions that, through technology, share and disseminate various information in real time to the population. However, these problems have numerous variables that make it difficult to resolve them in satisfactory time. In this way, this work proposes an algorithm that uses Points of Reference to determine rides in large-scale road networks considering 3 objectives (travel time, distance and number of traffic lights) in a satisfactory ti using an evolutionary multiobjective algorithm. In addition, a new mutation operator that guarantees only minor changes in individuals is proposed. The proposed approach is tested by performing simulations on a map of a large city with different levels of traffic congestion using Openstreetmap data. Finally, the results of the simulations are compared with solutions generated by the Dijkstra’s algorithm that represent the lowest theoretical value for each objective. Five sets of simulations were carried out with 3 scenarios each with different levels of traffic congestion. The results showed that the algorithm found viable trade-offs, highlighting the best results for the highest levels of congestion with average losses that did not exceed 20% in 2 of the 3 objectives in most of the simulations when compared with the theoretical minimum values. As for the computational time spent, in 2 groups the algorithm took on average 3 seconds to find the best routes and 6 seconds on average for the other 3 groups. In this way, it was concluded that the algorithm was able to generate viable trade-offs in a good computational time considering the environment in which it was executed. These results also reflected the efficiency of the proposed mutation operator.O congestionamento nos grandes centros urbanos é um dos principais problemas para as pessoas que necessitam se locomover diariamente seja utilizando o transporte público ou individual. O surgimento do conceito de cidades inteligentes tornou possível o desenvolvimento de inúmeras soluções inovadoras que, através da tecnologia, compartilham e disseminam diversas informações em tempo real para a população. Porém, à medida que o problema é tomado por inúmeras variáveis, torna-se cada vez mais difícil oferecer soluções viáveis e em tempo hábil. Desta forma, este trabalho propõe um algoritmo que utiliza Pontos de Referência para determinação de passeios em redes viárias de larga-escala considerando 3 objetivos (tempo de viagem, distância e número de semáforos) em tempo hábil utilizando um algoritmo evolucionário multiobjetivo. Além disso, um novo operador de mutação que garante apenas pequenas alterações nos indivíduos é proposto. A abordagem proposta é testada realizando simulações em um mapa de uma cidade grande com diferentes níveis de congestionamento utilizando os dados do Openstreetmap. Por fim, os resultados das simulações são comparados com soluções geradas pelo algoritmo de Dijkstra que representam o menor valor teórico para cada objetivo. Foram realizados 5 grupos de simulações com 3 cenários cada com diferentes níveis de congestionamento. Os resultados mostraram que o algoritmo encontrou diversos trade-offs, destacando os melhores resultados para os maiores níveis de congestionamento com perdas médias que não ultrapassaram os 20% em 2 dos 3 objetivos em grande parte das simulações. Quanto ao tempo computacional gasto, em 2 grupos o algoritmo demorou em média 3 segundos para encontrar as melhores rotas e 6 segundos em média para os outros 3 grupos. Desta forma, concluiu-se que o algoritmo foi capaz de gerar trade-offs viáveis em um bom tempo computacional considerando o ambiente em que foi executado. Estes resultados também refletiram a eficiência do operador de mutação proposto.Submitted by Mario BC (mario@bc.ufrpe.br) on 2019-02-19T14:31:58Z No. of bitstreams: 1 Rene Douglas Nobre de Morais.pdf: 5530207 bytes, checksum: 5a5d37004be289baba8e3151b581eb38 (MD5)Made available in DSpace on 2019-02-19T14:31:58Z (GMT). No. of bitstreams: 1 Rene Douglas Nobre de Morais.pdf: 5530207 bytes, checksum: 5a5d37004be289baba8e3151b581eb38 (MD5) Previous issue date: 2018-08-27application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Informática AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaCidade inteligenteGeração de rotaTráfego de veículoComputação evolucionáriaCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOAlgoritmo inteligente para geração de rotas em smart citiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-8268485641417162699600600600-67745551403961205013671711205811204509info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALRene Douglas Nobre de Morais.pdfRene Douglas Nobre de Morais.pdfapplication/pdf5530207http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7856/2/Rene+Douglas+Nobre+de+Morais.pdf5a5d37004be289baba8e3151b581eb38MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7856/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/78562019-02-19 11:31:58.15oai:tede2:tede2/7856Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:36:12.613765Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Algoritmo inteligente para geração de rotas em smart cities
title Algoritmo inteligente para geração de rotas em smart cities
spellingShingle Algoritmo inteligente para geração de rotas em smart cities
MORAIS, Renê Douglas Nobre de
Cidade inteligente
Geração de rota
Tráfego de veículo
Computação evolucionária
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Algoritmo inteligente para geração de rotas em smart cities
title_full Algoritmo inteligente para geração de rotas em smart cities
title_fullStr Algoritmo inteligente para geração de rotas em smart cities
title_full_unstemmed Algoritmo inteligente para geração de rotas em smart cities
title_sort Algoritmo inteligente para geração de rotas em smart cities
author MORAIS, Renê Douglas Nobre de
author_facet MORAIS, Renê Douglas Nobre de
author_role author
dc.contributor.advisor1.fl_str_mv GARROZI, Cícero
dc.contributor.referee1.fl_str_mv GARROZI, Cícero
dc.contributor.referee2.fl_str_mv FERREIRA, Tiago Alessandro Espínola
dc.contributor.referee3.fl_str_mv ARAÚJO, Aluizio Fausto Ribeiro
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7738769354541052
dc.contributor.author.fl_str_mv MORAIS, Renê Douglas Nobre de
contributor_str_mv GARROZI, Cícero
GARROZI, Cícero
FERREIRA, Tiago Alessandro Espínola
ARAÚJO, Aluizio Fausto Ribeiro
dc.subject.por.fl_str_mv Cidade inteligente
Geração de rota
Tráfego de veículo
Computação evolucionária
topic Cidade inteligente
Geração de rota
Tráfego de veículo
Computação evolucionária
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description The traffic congestion in large urban centers is one of the main problems for people who need to drive daily. The concept of smart cities has made possible the development of innumerable innovative solutions that, through technology, share and disseminate various information in real time to the population. However, these problems have numerous variables that make it difficult to resolve them in satisfactory time. In this way, this work proposes an algorithm that uses Points of Reference to determine rides in large-scale road networks considering 3 objectives (travel time, distance and number of traffic lights) in a satisfactory ti using an evolutionary multiobjective algorithm. In addition, a new mutation operator that guarantees only minor changes in individuals is proposed. The proposed approach is tested by performing simulations on a map of a large city with different levels of traffic congestion using Openstreetmap data. Finally, the results of the simulations are compared with solutions generated by the Dijkstra’s algorithm that represent the lowest theoretical value for each objective. Five sets of simulations were carried out with 3 scenarios each with different levels of traffic congestion. The results showed that the algorithm found viable trade-offs, highlighting the best results for the highest levels of congestion with average losses that did not exceed 20% in 2 of the 3 objectives in most of the simulations when compared with the theoretical minimum values. As for the computational time spent, in 2 groups the algorithm took on average 3 seconds to find the best routes and 6 seconds on average for the other 3 groups. In this way, it was concluded that the algorithm was able to generate viable trade-offs in a good computational time considering the environment in which it was executed. These results also reflected the efficiency of the proposed mutation operator.
publishDate 2018
dc.date.issued.fl_str_mv 2018-08-27
dc.date.accessioned.fl_str_mv 2019-02-19T14:31:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MORAIS, Renê Douglas Nobre de. Algoritmo inteligente para geração de rotas em smart cities. 2018. 113 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7856
identifier_str_mv MORAIS, Renê Douglas Nobre de. Algoritmo inteligente para geração de rotas em smart cities. 2018. 113 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7856
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -8268485641417162699
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -6774555140396120501
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática Aplicada
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Estatística e Informática
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7856/2/Rene+Douglas+Nobre+de+Morais.pdf
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7856/1/license.txt
bitstream.checksum.fl_str_mv 5a5d37004be289baba8e3151b581eb38
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102255820472320