A convolutional neural network with feature fusion for real-time hand posture recognition

Detalhes bibliográficos
Autor(a) principal: CHEVTCHENKO, Sérgio Fernandovitch
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7857
Resumo: Gesture based human-computer interaction is both intuitive and versatile, with diverse applications such as in smart houses, operating theaters and vehicle infotainment systems. This work focuses on recognition of static hand gestures, also known as hand postures. A good hand posture recognition system has to be both robust to image variations and capable of real-time performance. Considering the recent success of convolutional neural networks (CNNs) and robustness of more traditional methods, this dissertation presents a novel architecture, combining a CNN and several traditional feature extractors, capable of accurate and real-time hand posture recognition. Several hyperparameters present in the proposed architecture are automatically selected by a model optimization algorithm. The traditional features are extracted from Zernike moments, Hu moments, Gabor filters and properties of the hand contour. This features are used to complement the information available to the classification layer of a CNN. Besides the proposed architecture, recent convolutional neural networks are evaluated on three distinct benchmarking datasets. This datasets are further divided in depth, binary and grayscale subsets in order to investigate the influence of image representation on recognition accuracy. Furthermore, architectures are compared in terms of speed and accuracy using rescaling with and without preserving aspect ratio and two common validation techniques: holdout and leave-one-subject-out. The proposed architecture is shown to obtain state-of-the art recognition rate in realtime, while being robust to different image representations and scalings. A recognition improvement of 5.93% on current best model is achieved on an RGBD dataset containing 81,000 images of 27 hand postures. A demo video is provided as supplementary material, containing real-time recognition by the proposed network of up to 27 gestures at 30 fps from a 3D camera.
id URPE_1d1185d2db87790ad7bdc8134cc485ae
oai_identifier_str oai:tede2:tede2/7857
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling CORDEIRO, Filipe RolimMACÁRIO FILHO, Valmirhttp://lattes.cnpq.br/5146318019503884CHEVTCHENKO, Sérgio Fernandovitch2019-02-19T14:56:02Z2018-07-06CHEVTCHENKO, Sérgio Fernandovitch. A convolutional neural network with feature fusion for real-time hand posture recognition. 2018. 72 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7857Gesture based human-computer interaction is both intuitive and versatile, with diverse applications such as in smart houses, operating theaters and vehicle infotainment systems. This work focuses on recognition of static hand gestures, also known as hand postures. A good hand posture recognition system has to be both robust to image variations and capable of real-time performance. Considering the recent success of convolutional neural networks (CNNs) and robustness of more traditional methods, this dissertation presents a novel architecture, combining a CNN and several traditional feature extractors, capable of accurate and real-time hand posture recognition. Several hyperparameters present in the proposed architecture are automatically selected by a model optimization algorithm. The traditional features are extracted from Zernike moments, Hu moments, Gabor filters and properties of the hand contour. This features are used to complement the information available to the classification layer of a CNN. Besides the proposed architecture, recent convolutional neural networks are evaluated on three distinct benchmarking datasets. This datasets are further divided in depth, binary and grayscale subsets in order to investigate the influence of image representation on recognition accuracy. Furthermore, architectures are compared in terms of speed and accuracy using rescaling with and without preserving aspect ratio and two common validation techniques: holdout and leave-one-subject-out. The proposed architecture is shown to obtain state-of-the art recognition rate in realtime, while being robust to different image representations and scalings. A recognition improvement of 5.93% on current best model is achieved on an RGBD dataset containing 81,000 images of 27 hand postures. A demo video is provided as supplementary material, containing real-time recognition by the proposed network of up to 27 gestures at 30 fps from a 3D camera.O uso de gestos de mão é uma maneira intuitiva e versátil para humanos interagirem com computadores. Este trabalho tem como foco o reconhecimento de gestos estáticos, também conhecidos como posturas de mão. Um bom sistema de reconhecimento de gestos deve suportar variações na imagem, como de escala, iluminação e rotação, além de ser capaz de funcionar em tempo real. Considerando o sucesso recente de redes neurais convolutivas e robustez de técnicas tradicionais, esta dissertação apresenta uma nova arquitetura baseada em redes convolutivas para reconhecimento de gestos com acurácia e em tempo real. A arquitetura proposta combina redes convolutivas com descritores de características tradicionais. Os hiperparâmetros que descrevem esta nova rede são selecionados de forma automática usando um algoritmo de otimização. As características tradicionais são extraídas da imagem usando momentos de Zernike, momentos de Hu, filtros de Gabor e propriedades de contorno da mão. Estas características são usadas para complementar o conjunto de informações disponível para a camada de classificação da rede convolutiva. A arquitetura proposta é comparada com modelos de redes convolutivas propostos recentemente. Para isso são usadas três bases de dados de gestos estáticos de mão. Para verificar como a representação da imagem pode influenciar nos classificadores considerados nesse trabalho, as bases de dados são subdivididas em representações por profundidade, escala de cinza e binárias. Além disso, as arquiteturas são comparadas em termos de velocidade e acurácia de classificação, usando reescalonamento com e sem preservação de aspect ratio e dois métodos de validação comumente empregados no contexto de reconhecimento de gestos: holdout e leave-one-subject-out. É demonstrado experimentalmente que a arquitetura proposta supera o estado da arte com reconhecimento de gestos em tempo real, sendo robusta em diferentes representações e escalas da imagem. Foi registrada uma melhora de até 5.93% em comparação ao melhor modelo existente em uma base de dados RGBD com 81,000 imagens e 27 classes de gestos. Além disso, é disponibilizado um vídeo demostrando reconhecimento em tempo real de até 27 gestos estáticos de mão a 30 quadros por segundo, usando uma câmera 3D.Submitted by Mario BC (mario@bc.ufrpe.br) on 2019-02-19T14:56:02Z No. of bitstreams: 1 Sergio Fernandovitch Chevtchenko.pdf: 6596773 bytes, checksum: 07a4b87a297c9b98bec9f4327a416065 (MD5)Made available in DSpace on 2019-02-19T14:56:02Z (GMT). No. of bitstreams: 1 Sergio Fernandovitch Chevtchenko.pdf: 6596773 bytes, checksum: 07a4b87a297c9b98bec9f4327a416065 (MD5) Previous issue date: 2018-07-06application/pdfengUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Informática AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaPosturas de mãoRede convolutivaRede neuralReconhecimento de gestosCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOA convolutional neural network with feature fusion for real-time hand posture recognitioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-8268485641417162699600600600-67745551403961205013671711205811204509info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALSergio Fernandovitch Chevtchenko.pdfSergio Fernandovitch Chevtchenko.pdfapplication/pdf6596773http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7857/2/Sergio+Fernandovitch+Chevtchenko.pdf07a4b87a297c9b98bec9f4327a416065MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7857/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/78572019-02-19 11:56:02.693oai:tede2:tede2/7857Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:36:12.678103Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv A convolutional neural network with feature fusion for real-time hand posture recognition
title A convolutional neural network with feature fusion for real-time hand posture recognition
spellingShingle A convolutional neural network with feature fusion for real-time hand posture recognition
CHEVTCHENKO, Sérgio Fernandovitch
Posturas de mão
Rede convolutiva
Rede neural
Reconhecimento de gestos
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short A convolutional neural network with feature fusion for real-time hand posture recognition
title_full A convolutional neural network with feature fusion for real-time hand posture recognition
title_fullStr A convolutional neural network with feature fusion for real-time hand posture recognition
title_full_unstemmed A convolutional neural network with feature fusion for real-time hand posture recognition
title_sort A convolutional neural network with feature fusion for real-time hand posture recognition
author CHEVTCHENKO, Sérgio Fernandovitch
author_facet CHEVTCHENKO, Sérgio Fernandovitch
author_role author
dc.contributor.advisor1.fl_str_mv CORDEIRO, Filipe Rolim
dc.contributor.advisor-co1.fl_str_mv MACÁRIO FILHO, Valmir
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5146318019503884
dc.contributor.author.fl_str_mv CHEVTCHENKO, Sérgio Fernandovitch
contributor_str_mv CORDEIRO, Filipe Rolim
MACÁRIO FILHO, Valmir
dc.subject.por.fl_str_mv Posturas de mão
Rede convolutiva
Rede neural
Reconhecimento de gestos
topic Posturas de mão
Rede convolutiva
Rede neural
Reconhecimento de gestos
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Gesture based human-computer interaction is both intuitive and versatile, with diverse applications such as in smart houses, operating theaters and vehicle infotainment systems. This work focuses on recognition of static hand gestures, also known as hand postures. A good hand posture recognition system has to be both robust to image variations and capable of real-time performance. Considering the recent success of convolutional neural networks (CNNs) and robustness of more traditional methods, this dissertation presents a novel architecture, combining a CNN and several traditional feature extractors, capable of accurate and real-time hand posture recognition. Several hyperparameters present in the proposed architecture are automatically selected by a model optimization algorithm. The traditional features are extracted from Zernike moments, Hu moments, Gabor filters and properties of the hand contour. This features are used to complement the information available to the classification layer of a CNN. Besides the proposed architecture, recent convolutional neural networks are evaluated on three distinct benchmarking datasets. This datasets are further divided in depth, binary and grayscale subsets in order to investigate the influence of image representation on recognition accuracy. Furthermore, architectures are compared in terms of speed and accuracy using rescaling with and without preserving aspect ratio and two common validation techniques: holdout and leave-one-subject-out. The proposed architecture is shown to obtain state-of-the art recognition rate in realtime, while being robust to different image representations and scalings. A recognition improvement of 5.93% on current best model is achieved on an RGBD dataset containing 81,000 images of 27 hand postures. A demo video is provided as supplementary material, containing real-time recognition by the proposed network of up to 27 gestures at 30 fps from a 3D camera.
publishDate 2018
dc.date.issued.fl_str_mv 2018-07-06
dc.date.accessioned.fl_str_mv 2019-02-19T14:56:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CHEVTCHENKO, Sérgio Fernandovitch. A convolutional neural network with feature fusion for real-time hand posture recognition. 2018. 72 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7857
identifier_str_mv CHEVTCHENKO, Sérgio Fernandovitch. A convolutional neural network with feature fusion for real-time hand posture recognition. 2018. 72 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7857
dc.language.iso.fl_str_mv eng
language eng
dc.relation.program.fl_str_mv -8268485641417162699
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -6774555140396120501
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática Aplicada
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Estatística e Informática
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7857/2/Sergio+Fernandovitch+Chevtchenko.pdf
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7857/1/license.txt
bitstream.checksum.fl_str_mv 07a4b87a297c9b98bec9f4327a416065
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102255826763776