Otimização do mapeamento genético vegetal via simulação computacional

Detalhes bibliográficos
Autor(a) principal: BRITO, Silvan Gomes de
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6513
Resumo: Genetic mapping based on the planning and establishment of the linear distance between marks associated with genes responsible for controlling qualitative and quantitative characteristics. The construction of genetic maps is considered the most impact applications of the technology of molecular markers in genetic analysis of species, potentially in plant breeding. A genetic map of linkage may be low, medium and high resolution in accordance with the greater or lesser number of genes or ordered markers. A factor of considerable importance to obtain consistent data that result in more accurate maps is the sample size or population, level of saturation in the linkage groups and marker type to be used. Thus, the aim of this work was to estimate the optimum size of population and saturation of the genomes were generated with saturation levels of 5, 10 and 20 cM, containing 210, 110, and marks 60, respectively, and F2 populations double-haploid populations. Each genome was composed of 10 linkage groups, with a size of 100 cM each. For each level of saturation of the genome populations were generated at 100, 200, 300, 500, 800 and 1000 individuals, with 100 replicates, each codominant and dominant markers used when the type F2 populations were dominant and only double-haploid populations. These populations were mapped using LODmín 3 and a maximum frequency of recombination of 30%. From the maps obtained were extracted information regarding the number of linkage groups and marks for group, size of linkage group, distance between adjacent marks, variance of the distances between adjacent marks, marks inversion obtained by Spearman correlation and degree of agreement of distances on maps with the original genome, obtained by the stress. Populations of the same size tend to produce maps with greater accuracy in higher levels of genome saturation. The optimum size of F2 populations for genetic mapping must be of at least 200 individuals when codominant markers are of type and 300 when the markers are the dominant type, regardless of the saturation level of the genome. While double-haploid populations in the optimal size was 200, 500 and 1000 individuals when the saturation levels of the genome were 5, 10 and 20 cM, respectively.
id URPE_23fbbf2c2bce1a9c26baf7adda62e6a4
oai_identifier_str oai:tede2:tede2/6513
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling MELO FILHO, Péricles de AlbuquerqueNEDER, Diogo GonçalvesCARVALHO FILHO, José Luiz Sandes deMELO, Roberto de Albuquerquehttp://lattes.cnpq.br/2838027545569853BRITO, Silvan Gomes de2017-02-21T18:02:51Z2012-07-23BRITO, Silvan Gomes de. Otimização do mapeamento genético vegetal via simulação computacional. 2012. 79 f. Dissertação (Programa de Pós-Graduação em Melhoramento Genético de Plantas) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6513Genetic mapping based on the planning and establishment of the linear distance between marks associated with genes responsible for controlling qualitative and quantitative characteristics. The construction of genetic maps is considered the most impact applications of the technology of molecular markers in genetic analysis of species, potentially in plant breeding. A genetic map of linkage may be low, medium and high resolution in accordance with the greater or lesser number of genes or ordered markers. A factor of considerable importance to obtain consistent data that result in more accurate maps is the sample size or population, level of saturation in the linkage groups and marker type to be used. Thus, the aim of this work was to estimate the optimum size of population and saturation of the genomes were generated with saturation levels of 5, 10 and 20 cM, containing 210, 110, and marks 60, respectively, and F2 populations double-haploid populations. Each genome was composed of 10 linkage groups, with a size of 100 cM each. For each level of saturation of the genome populations were generated at 100, 200, 300, 500, 800 and 1000 individuals, with 100 replicates, each codominant and dominant markers used when the type F2 populations were dominant and only double-haploid populations. These populations were mapped using LODmín 3 and a maximum frequency of recombination of 30%. From the maps obtained were extracted information regarding the number of linkage groups and marks for group, size of linkage group, distance between adjacent marks, variance of the distances between adjacent marks, marks inversion obtained by Spearman correlation and degree of agreement of distances on maps with the original genome, obtained by the stress. Populations of the same size tend to produce maps with greater accuracy in higher levels of genome saturation. The optimum size of F2 populations for genetic mapping must be of at least 200 individuals when codominant markers are of type and 300 when the markers are the dominant type, regardless of the saturation level of the genome. While double-haploid populations in the optimal size was 200, 500 and 1000 individuals when the saturation levels of the genome were 5, 10 and 20 cM, respectively.O mapeamento genético baseia-se no ordenamento linear e estabelecimento da distância entre marcas associadas a genes responsáveis pelo controle de características qualitativas e quantitativas. A construção de mapas genéticos é considerada uma das aplicações de maior impacto da tecnologia de marcadores moleculares na análise genética de espécies, e potencialmente, no melhoramento de plantas. Um mapa genético de ligação pode ter baixa, média e alta resolução, de acordo com menor ou maior número de genes ou marcadores ordenados. Um fator de fundamental importância para se obter dados consistentes que resultem em mapas mais acurados é o tamanho da amostra ou da população, o nível de saturação nos grupos de ligação e tipo de marcador a ser utilizado. Desse modo, objetivou-se com este trabalho estimar o tamanho ideal de população e saturação do genoma para a obtenção de mapas de ligação confiáveis por meio de simulação de dados em computador. Foram gerados três genomas com níveis de saturação de 5, 10 e 20 cM, contendo 210, 110 e 60 marcas, respectivamente, para populações F2 e populações duplo-haplóide. Cada genoma foi composto por 10 grupos de ligação, com um tamanho de 100 cM cada. Para cada nível de saturação do genoma foram geradas populações com 100, 200, 300, 500, 800 e 1000 indivíduos, com 100 repetições cada, sendo utilizado marcadores codominantes e dominantes quando as populações eram do tipo F2 e apenas dominante para populações duplo-haplóide. Estas populações foram mapeadas utilizando um LODmín de 3 e frequência máxima de recombinação de 30%. Dos mapas obtidos foram extraídas informações referentes ao número de grupos de ligação e de marcas por grupo, tamanho de grupo de ligação, distância entre marcas adjacentes, variância das distâncias entre marcas adjacentes, inversão de marcas obtida pela correlação de Spearman e grau de concordância das distâncias nos mapas com o genoma original obtida pelo estresse. Populações de mesmo tamanho tendem a produzir mapas com maior acurácia em níveis de saturação do genoma mais elevados. O tamanho ideal de populações F2 para mapeamento genético é de no mínimo 200 indivíduos quando os marcadores forem do tipo codominante e de 300 quando os marcadores forem do tipo dominante, independente do nível de saturação do genoma. Enquanto que em populações duplo-haplóide o tamanho ideal é de 200, 500 e 1000 indivíduos quando os níveis de saturação do genoma forem de 5, 10 e 20 cM, respectivamente.Submitted by (ana.araujo@ufrpe.br) on 2017-02-21T18:02:51Z No. of bitstreams: 1 Silvan Gomes de Brito.pdf: 841884 bytes, checksum: 6b8e147dd9071bbb1076ca5bcf2a438e (MD5)Made available in DSpace on 2017-02-21T18:02:51Z (GMT). No. of bitstreams: 1 Silvan Gomes de Brito.pdf: 841884 bytes, checksum: 6b8e147dd9071bbb1076ca5bcf2a438e (MD5) Previous issue date: 2012-07-23Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Melhoramento Genético de PlantasUFRPEBrasilDepartamento de AgronomiaMarcador genéticoMapa de ligaçãoDuplo-haplóideMelhoramento genéticoGenetic markerLinkage mapDouble-haploidGenetic improvementFITOTECNIA::MELHORAMENTO VEGETALOtimização do mapeamento genético vegetal via simulação computacionalinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-6234655866848882505600600600600-680055387997222920526156072994701319672075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6513/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALSilvan Gomes de Brito.pdfSilvan Gomes de Brito.pdfapplication/pdf841884http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6513/2/Silvan+Gomes+de+Brito.pdf6b8e147dd9071bbb1076ca5bcf2a438eMD52tede2/65132017-05-17 12:09:16.826oai:tede2:tede2/6513Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:34:27.251105Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Otimização do mapeamento genético vegetal via simulação computacional
title Otimização do mapeamento genético vegetal via simulação computacional
spellingShingle Otimização do mapeamento genético vegetal via simulação computacional
BRITO, Silvan Gomes de
Marcador genético
Mapa de ligação
Duplo-haplóide
Melhoramento genético
Genetic marker
Linkage map
Double-haploid
Genetic improvement
FITOTECNIA::MELHORAMENTO VEGETAL
title_short Otimização do mapeamento genético vegetal via simulação computacional
title_full Otimização do mapeamento genético vegetal via simulação computacional
title_fullStr Otimização do mapeamento genético vegetal via simulação computacional
title_full_unstemmed Otimização do mapeamento genético vegetal via simulação computacional
title_sort Otimização do mapeamento genético vegetal via simulação computacional
author BRITO, Silvan Gomes de
author_facet BRITO, Silvan Gomes de
author_role author
dc.contributor.advisor1.fl_str_mv MELO FILHO, Péricles de Albuquerque
dc.contributor.advisor-co1.fl_str_mv NEDER, Diogo Gonçalves
dc.contributor.referee1.fl_str_mv CARVALHO FILHO, José Luiz Sandes de
dc.contributor.referee2.fl_str_mv MELO, Roberto de Albuquerque
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2838027545569853
dc.contributor.author.fl_str_mv BRITO, Silvan Gomes de
contributor_str_mv MELO FILHO, Péricles de Albuquerque
NEDER, Diogo Gonçalves
CARVALHO FILHO, José Luiz Sandes de
MELO, Roberto de Albuquerque
dc.subject.por.fl_str_mv Marcador genético
Mapa de ligação
Duplo-haplóide
Melhoramento genético
topic Marcador genético
Mapa de ligação
Duplo-haplóide
Melhoramento genético
Genetic marker
Linkage map
Double-haploid
Genetic improvement
FITOTECNIA::MELHORAMENTO VEGETAL
dc.subject.eng.fl_str_mv Genetic marker
Linkage map
Double-haploid
Genetic improvement
dc.subject.cnpq.fl_str_mv FITOTECNIA::MELHORAMENTO VEGETAL
description Genetic mapping based on the planning and establishment of the linear distance between marks associated with genes responsible for controlling qualitative and quantitative characteristics. The construction of genetic maps is considered the most impact applications of the technology of molecular markers in genetic analysis of species, potentially in plant breeding. A genetic map of linkage may be low, medium and high resolution in accordance with the greater or lesser number of genes or ordered markers. A factor of considerable importance to obtain consistent data that result in more accurate maps is the sample size or population, level of saturation in the linkage groups and marker type to be used. Thus, the aim of this work was to estimate the optimum size of population and saturation of the genomes were generated with saturation levels of 5, 10 and 20 cM, containing 210, 110, and marks 60, respectively, and F2 populations double-haploid populations. Each genome was composed of 10 linkage groups, with a size of 100 cM each. For each level of saturation of the genome populations were generated at 100, 200, 300, 500, 800 and 1000 individuals, with 100 replicates, each codominant and dominant markers used when the type F2 populations were dominant and only double-haploid populations. These populations were mapped using LODmín 3 and a maximum frequency of recombination of 30%. From the maps obtained were extracted information regarding the number of linkage groups and marks for group, size of linkage group, distance between adjacent marks, variance of the distances between adjacent marks, marks inversion obtained by Spearman correlation and degree of agreement of distances on maps with the original genome, obtained by the stress. Populations of the same size tend to produce maps with greater accuracy in higher levels of genome saturation. The optimum size of F2 populations for genetic mapping must be of at least 200 individuals when codominant markers are of type and 300 when the markers are the dominant type, regardless of the saturation level of the genome. While double-haploid populations in the optimal size was 200, 500 and 1000 individuals when the saturation levels of the genome were 5, 10 and 20 cM, respectively.
publishDate 2012
dc.date.issued.fl_str_mv 2012-07-23
dc.date.accessioned.fl_str_mv 2017-02-21T18:02:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BRITO, Silvan Gomes de. Otimização do mapeamento genético vegetal via simulação computacional. 2012. 79 f. Dissertação (Programa de Pós-Graduação em Melhoramento Genético de Plantas) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6513
identifier_str_mv BRITO, Silvan Gomes de. Otimização do mapeamento genético vegetal via simulação computacional. 2012. 79 f. Dissertação (Programa de Pós-Graduação em Melhoramento Genético de Plantas) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6513
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -6234655866848882505
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -6800553879972229205
dc.relation.cnpq.fl_str_mv 2615607299470131967
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Melhoramento Genético de Plantas
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Agronomia
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6513/1/license.txt
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6513/2/Silvan+Gomes+de+Brito.pdf
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
6b8e147dd9071bbb1076ca5bcf2a438e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102238465490944