Otimização do mapeamento genético vegetal via simulação computacional
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6513 |
Resumo: | Genetic mapping based on the planning and establishment of the linear distance between marks associated with genes responsible for controlling qualitative and quantitative characteristics. The construction of genetic maps is considered the most impact applications of the technology of molecular markers in genetic analysis of species, potentially in plant breeding. A genetic map of linkage may be low, medium and high resolution in accordance with the greater or lesser number of genes or ordered markers. A factor of considerable importance to obtain consistent data that result in more accurate maps is the sample size or population, level of saturation in the linkage groups and marker type to be used. Thus, the aim of this work was to estimate the optimum size of population and saturation of the genomes were generated with saturation levels of 5, 10 and 20 cM, containing 210, 110, and marks 60, respectively, and F2 populations double-haploid populations. Each genome was composed of 10 linkage groups, with a size of 100 cM each. For each level of saturation of the genome populations were generated at 100, 200, 300, 500, 800 and 1000 individuals, with 100 replicates, each codominant and dominant markers used when the type F2 populations were dominant and only double-haploid populations. These populations were mapped using LODmín 3 and a maximum frequency of recombination of 30%. From the maps obtained were extracted information regarding the number of linkage groups and marks for group, size of linkage group, distance between adjacent marks, variance of the distances between adjacent marks, marks inversion obtained by Spearman correlation and degree of agreement of distances on maps with the original genome, obtained by the stress. Populations of the same size tend to produce maps with greater accuracy in higher levels of genome saturation. The optimum size of F2 populations for genetic mapping must be of at least 200 individuals when codominant markers are of type and 300 when the markers are the dominant type, regardless of the saturation level of the genome. While double-haploid populations in the optimal size was 200, 500 and 1000 individuals when the saturation levels of the genome were 5, 10 and 20 cM, respectively. |
id |
URPE_23fbbf2c2bce1a9c26baf7adda62e6a4 |
---|---|
oai_identifier_str |
oai:tede2:tede2/6513 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
MELO FILHO, Péricles de AlbuquerqueNEDER, Diogo GonçalvesCARVALHO FILHO, José Luiz Sandes deMELO, Roberto de Albuquerquehttp://lattes.cnpq.br/2838027545569853BRITO, Silvan Gomes de2017-02-21T18:02:51Z2012-07-23BRITO, Silvan Gomes de. Otimização do mapeamento genético vegetal via simulação computacional. 2012. 79 f. Dissertação (Programa de Pós-Graduação em Melhoramento Genético de Plantas) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6513Genetic mapping based on the planning and establishment of the linear distance between marks associated with genes responsible for controlling qualitative and quantitative characteristics. The construction of genetic maps is considered the most impact applications of the technology of molecular markers in genetic analysis of species, potentially in plant breeding. A genetic map of linkage may be low, medium and high resolution in accordance with the greater or lesser number of genes or ordered markers. A factor of considerable importance to obtain consistent data that result in more accurate maps is the sample size or population, level of saturation in the linkage groups and marker type to be used. Thus, the aim of this work was to estimate the optimum size of population and saturation of the genomes were generated with saturation levels of 5, 10 and 20 cM, containing 210, 110, and marks 60, respectively, and F2 populations double-haploid populations. Each genome was composed of 10 linkage groups, with a size of 100 cM each. For each level of saturation of the genome populations were generated at 100, 200, 300, 500, 800 and 1000 individuals, with 100 replicates, each codominant and dominant markers used when the type F2 populations were dominant and only double-haploid populations. These populations were mapped using LODmín 3 and a maximum frequency of recombination of 30%. From the maps obtained were extracted information regarding the number of linkage groups and marks for group, size of linkage group, distance between adjacent marks, variance of the distances between adjacent marks, marks inversion obtained by Spearman correlation and degree of agreement of distances on maps with the original genome, obtained by the stress. Populations of the same size tend to produce maps with greater accuracy in higher levels of genome saturation. The optimum size of F2 populations for genetic mapping must be of at least 200 individuals when codominant markers are of type and 300 when the markers are the dominant type, regardless of the saturation level of the genome. While double-haploid populations in the optimal size was 200, 500 and 1000 individuals when the saturation levels of the genome were 5, 10 and 20 cM, respectively.O mapeamento genético baseia-se no ordenamento linear e estabelecimento da distância entre marcas associadas a genes responsáveis pelo controle de características qualitativas e quantitativas. A construção de mapas genéticos é considerada uma das aplicações de maior impacto da tecnologia de marcadores moleculares na análise genética de espécies, e potencialmente, no melhoramento de plantas. Um mapa genético de ligação pode ter baixa, média e alta resolução, de acordo com menor ou maior número de genes ou marcadores ordenados. Um fator de fundamental importância para se obter dados consistentes que resultem em mapas mais acurados é o tamanho da amostra ou da população, o nível de saturação nos grupos de ligação e tipo de marcador a ser utilizado. Desse modo, objetivou-se com este trabalho estimar o tamanho ideal de população e saturação do genoma para a obtenção de mapas de ligação confiáveis por meio de simulação de dados em computador. Foram gerados três genomas com níveis de saturação de 5, 10 e 20 cM, contendo 210, 110 e 60 marcas, respectivamente, para populações F2 e populações duplo-haplóide. Cada genoma foi composto por 10 grupos de ligação, com um tamanho de 100 cM cada. Para cada nível de saturação do genoma foram geradas populações com 100, 200, 300, 500, 800 e 1000 indivíduos, com 100 repetições cada, sendo utilizado marcadores codominantes e dominantes quando as populações eram do tipo F2 e apenas dominante para populações duplo-haplóide. Estas populações foram mapeadas utilizando um LODmín de 3 e frequência máxima de recombinação de 30%. Dos mapas obtidos foram extraídas informações referentes ao número de grupos de ligação e de marcas por grupo, tamanho de grupo de ligação, distância entre marcas adjacentes, variância das distâncias entre marcas adjacentes, inversão de marcas obtida pela correlação de Spearman e grau de concordância das distâncias nos mapas com o genoma original obtida pelo estresse. Populações de mesmo tamanho tendem a produzir mapas com maior acurácia em níveis de saturação do genoma mais elevados. O tamanho ideal de populações F2 para mapeamento genético é de no mínimo 200 indivíduos quando os marcadores forem do tipo codominante e de 300 quando os marcadores forem do tipo dominante, independente do nível de saturação do genoma. Enquanto que em populações duplo-haplóide o tamanho ideal é de 200, 500 e 1000 indivíduos quando os níveis de saturação do genoma forem de 5, 10 e 20 cM, respectivamente.Submitted by (ana.araujo@ufrpe.br) on 2017-02-21T18:02:51Z No. of bitstreams: 1 Silvan Gomes de Brito.pdf: 841884 bytes, checksum: 6b8e147dd9071bbb1076ca5bcf2a438e (MD5)Made available in DSpace on 2017-02-21T18:02:51Z (GMT). No. of bitstreams: 1 Silvan Gomes de Brito.pdf: 841884 bytes, checksum: 6b8e147dd9071bbb1076ca5bcf2a438e (MD5) Previous issue date: 2012-07-23Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Melhoramento Genético de PlantasUFRPEBrasilDepartamento de AgronomiaMarcador genéticoMapa de ligaçãoDuplo-haplóideMelhoramento genéticoGenetic markerLinkage mapDouble-haploidGenetic improvementFITOTECNIA::MELHORAMENTO VEGETALOtimização do mapeamento genético vegetal via simulação computacionalinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-6234655866848882505600600600600-680055387997222920526156072994701319672075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6513/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALSilvan Gomes de Brito.pdfSilvan Gomes de Brito.pdfapplication/pdf841884http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6513/2/Silvan+Gomes+de+Brito.pdf6b8e147dd9071bbb1076ca5bcf2a438eMD52tede2/65132017-05-17 12:09:16.826oai:tede2:tede2/6513Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:34:27.251105Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Otimização do mapeamento genético vegetal via simulação computacional |
title |
Otimização do mapeamento genético vegetal via simulação computacional |
spellingShingle |
Otimização do mapeamento genético vegetal via simulação computacional BRITO, Silvan Gomes de Marcador genético Mapa de ligação Duplo-haplóide Melhoramento genético Genetic marker Linkage map Double-haploid Genetic improvement FITOTECNIA::MELHORAMENTO VEGETAL |
title_short |
Otimização do mapeamento genético vegetal via simulação computacional |
title_full |
Otimização do mapeamento genético vegetal via simulação computacional |
title_fullStr |
Otimização do mapeamento genético vegetal via simulação computacional |
title_full_unstemmed |
Otimização do mapeamento genético vegetal via simulação computacional |
title_sort |
Otimização do mapeamento genético vegetal via simulação computacional |
author |
BRITO, Silvan Gomes de |
author_facet |
BRITO, Silvan Gomes de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
MELO FILHO, Péricles de Albuquerque |
dc.contributor.advisor-co1.fl_str_mv |
NEDER, Diogo Gonçalves |
dc.contributor.referee1.fl_str_mv |
CARVALHO FILHO, José Luiz Sandes de |
dc.contributor.referee2.fl_str_mv |
MELO, Roberto de Albuquerque |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2838027545569853 |
dc.contributor.author.fl_str_mv |
BRITO, Silvan Gomes de |
contributor_str_mv |
MELO FILHO, Péricles de Albuquerque NEDER, Diogo Gonçalves CARVALHO FILHO, José Luiz Sandes de MELO, Roberto de Albuquerque |
dc.subject.por.fl_str_mv |
Marcador genético Mapa de ligação Duplo-haplóide Melhoramento genético |
topic |
Marcador genético Mapa de ligação Duplo-haplóide Melhoramento genético Genetic marker Linkage map Double-haploid Genetic improvement FITOTECNIA::MELHORAMENTO VEGETAL |
dc.subject.eng.fl_str_mv |
Genetic marker Linkage map Double-haploid Genetic improvement |
dc.subject.cnpq.fl_str_mv |
FITOTECNIA::MELHORAMENTO VEGETAL |
description |
Genetic mapping based on the planning and establishment of the linear distance between marks associated with genes responsible for controlling qualitative and quantitative characteristics. The construction of genetic maps is considered the most impact applications of the technology of molecular markers in genetic analysis of species, potentially in plant breeding. A genetic map of linkage may be low, medium and high resolution in accordance with the greater or lesser number of genes or ordered markers. A factor of considerable importance to obtain consistent data that result in more accurate maps is the sample size or population, level of saturation in the linkage groups and marker type to be used. Thus, the aim of this work was to estimate the optimum size of population and saturation of the genomes were generated with saturation levels of 5, 10 and 20 cM, containing 210, 110, and marks 60, respectively, and F2 populations double-haploid populations. Each genome was composed of 10 linkage groups, with a size of 100 cM each. For each level of saturation of the genome populations were generated at 100, 200, 300, 500, 800 and 1000 individuals, with 100 replicates, each codominant and dominant markers used when the type F2 populations were dominant and only double-haploid populations. These populations were mapped using LODmín 3 and a maximum frequency of recombination of 30%. From the maps obtained were extracted information regarding the number of linkage groups and marks for group, size of linkage group, distance between adjacent marks, variance of the distances between adjacent marks, marks inversion obtained by Spearman correlation and degree of agreement of distances on maps with the original genome, obtained by the stress. Populations of the same size tend to produce maps with greater accuracy in higher levels of genome saturation. The optimum size of F2 populations for genetic mapping must be of at least 200 individuals when codominant markers are of type and 300 when the markers are the dominant type, regardless of the saturation level of the genome. While double-haploid populations in the optimal size was 200, 500 and 1000 individuals when the saturation levels of the genome were 5, 10 and 20 cM, respectively. |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012-07-23 |
dc.date.accessioned.fl_str_mv |
2017-02-21T18:02:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BRITO, Silvan Gomes de. Otimização do mapeamento genético vegetal via simulação computacional. 2012. 79 f. Dissertação (Programa de Pós-Graduação em Melhoramento Genético de Plantas) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6513 |
identifier_str_mv |
BRITO, Silvan Gomes de. Otimização do mapeamento genético vegetal via simulação computacional. 2012. 79 f. Dissertação (Programa de Pós-Graduação em Melhoramento Genético de Plantas) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6513 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-6234655866848882505 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-6800553879972229205 |
dc.relation.cnpq.fl_str_mv |
2615607299470131967 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Melhoramento Genético de Plantas |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Agronomia |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6513/1/license.txt http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6513/2/Silvan+Gomes+de+Brito.pdf |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 6b8e147dd9071bbb1076ca5bcf2a438e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102238465490944 |