New trigonometric classes of probabilistic distributions

Detalhes bibliográficos
Autor(a) principal: SOUZA, Luciano
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5127
Resumo: In this thesis, four new probabilistic distribution classes are presented and investigated: sine, cosine, tangent and secant. For each of which a new kind of distribution was created, which were used for modelling real life data.By having an exponential distribution to compare the biases, a numerical simulation was obtained, making it possible to verify that the bias tends to zero as the sample size is increased. In addition to that, some numerical results for checking maximum likelihood estimates, as well as the results for finite samples, were obtained, just as much as several class properties and their respective distributions were also obtained, along with the expansions, maximum likelihood estimates, Fisher information, the first four moments, average, variance, skewness, and kurtosis, the generating function of moments and Renyi’s entropy. It was evidenced that all distributions have shown good fit when applied to real life data, when in comparison to other models. In order to compare the models, the Akaike Information Criterion (AIC), the Corrected Akaike Information Criterion (CAIC), the Bayesian Information Criterion (BIC), the Hannan Quinn Information Criterion (HQIC) were used, along with two other main statistic sources: Cramer-Von Mises and Anderson-Darling. As a final step, the results of the analyses and the comparison of the results are brought up, as well as a few directions for future works.
id URPE_3c337e66b50908ba430301de7ec47be2
oai_identifier_str oai:tede2:tede2/5127
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling OLIVEIRA JUNIOR, Wilson Rosa deBRITO, Cícero Carlos Ramos deFERREIRA, Tiago Alessandro EspinolaRAMOS, Manoel Wallace AlvesSILVA, Frank Sinatra Gomes daSILVA, Ronaldo Venâncio dahttp://lattes.cnpq.br/2809045916123211SOUZA, Luciano2016-08-01T12:46:49Z2015-11-13SOUZA, Luciano. New trigonometric classes of probabilistic distributions. 2015. 216 f. Tese (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5127In this thesis, four new probabilistic distribution classes are presented and investigated: sine, cosine, tangent and secant. For each of which a new kind of distribution was created, which were used for modelling real life data.By having an exponential distribution to compare the biases, a numerical simulation was obtained, making it possible to verify that the bias tends to zero as the sample size is increased. In addition to that, some numerical results for checking maximum likelihood estimates, as well as the results for finite samples, were obtained, just as much as several class properties and their respective distributions were also obtained, along with the expansions, maximum likelihood estimates, Fisher information, the first four moments, average, variance, skewness, and kurtosis, the generating function of moments and Renyi’s entropy. It was evidenced that all distributions have shown good fit when applied to real life data, when in comparison to other models. In order to compare the models, the Akaike Information Criterion (AIC), the Corrected Akaike Information Criterion (CAIC), the Bayesian Information Criterion (BIC), the Hannan Quinn Information Criterion (HQIC) were used, along with two other main statistic sources: Cramer-Von Mises and Anderson-Darling. As a final step, the results of the analyses and the comparison of the results are brought up, as well as a few directions for future works.Nesta tese apresentamos e investigamos quatro novas classes trigonométricas de distribuições probabilísticas. As classes seno, cosseno, tangente e secante. Para cada uma das novas classes foi criada uma nova distribuição. Estas quatro novas distribuições foram usadas na modelagem de dados reais. Obtivemos uma simulação numérica, usando como base a distribuição exponencial, para se comparar os vicios (bias) e verificamos que, a medida que aumentamos o tamanho da amostra, o bias tende a zero. Alguns resultados numéricos para ver estimativas de máxima verossimilhança e os resultados para amostras finitas foram obtidos. Várias propriedades das classes e as suas distribuições foram obtidos. Obtemos as expansões, as estimativas de máxima verossimilhança, informações de Fisher, os quatro primeiros momentos, média, variância, assimetria e curtose, a função geradora de momentos e a entropia Rényi. Mostramos que todas as distribuições têm proporcionado bons ajustes quando aplicadas a dados reais, em comparação com outros modelos. Na comparação dos modelos foram utilizados: o Akaike Information Criterion (AIC), o Akaike Information Criterion Corrigido (CAIC), a informação Bayesian Criterion (BIC), o critério de informação Hannan Quinn (HQIC) e duas das principais estatísticas também foram utilizadas: Cramer -von Mises e Anderson-Darling. Por fim, apresentamos os resultados da análise e comparação dos resultados, e orientações para trabalhos futuros.Submitted by Mario BC (mario@bc.ufrpe.br) on 2016-08-01T12:46:49Z No. of bitstreams: 1 Luciano Souza.pdf: 1424173 bytes, checksum: 75d7ff2adb5077203e1371925327b71e (MD5)Made available in DSpace on 2016-08-01T12:46:49Z (GMT). No. of bitstreams: 1 Luciano Souza.pdf: 1424173 bytes, checksum: 75d7ff2adb5077203e1371925327b71e (MD5) Previous issue date: 2015-11-13application/pdfengUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Biometria e Estatística AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaClasse trigonométricaDistribuição probabilísticaFunção univariadaTrigonometric classesProbability distributionsUnivariate functionsCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICANew trigonometric classes of probabilistic distributionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis768382242446187918600600600-6774555140396120501-5836407828185143517info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5127/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALLuciano Souza.pdfLuciano Souza.pdfapplication/pdf1424173http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5127/2/Luciano+Souza.pdf75d7ff2adb5077203e1371925327b71eMD52tede2/51272016-08-01 09:46:49.793oai:tede2:tede2/5127Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:32:38.563761Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv New trigonometric classes of probabilistic distributions
title New trigonometric classes of probabilistic distributions
spellingShingle New trigonometric classes of probabilistic distributions
SOUZA, Luciano
Classe trigonométrica
Distribuição probabilística
Função univariada
Trigonometric classes
Probability distributions
Univariate functions
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short New trigonometric classes of probabilistic distributions
title_full New trigonometric classes of probabilistic distributions
title_fullStr New trigonometric classes of probabilistic distributions
title_full_unstemmed New trigonometric classes of probabilistic distributions
title_sort New trigonometric classes of probabilistic distributions
author SOUZA, Luciano
author_facet SOUZA, Luciano
author_role author
dc.contributor.advisor1.fl_str_mv OLIVEIRA JUNIOR, Wilson Rosa de
dc.contributor.advisor-co1.fl_str_mv BRITO, Cícero Carlos Ramos de
dc.contributor.advisor-co2.fl_str_mv FERREIRA, Tiago Alessandro Espinola
dc.contributor.referee1.fl_str_mv RAMOS, Manoel Wallace Alves
dc.contributor.referee2.fl_str_mv SILVA, Frank Sinatra Gomes da
dc.contributor.referee3.fl_str_mv SILVA, Ronaldo Venâncio da
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2809045916123211
dc.contributor.author.fl_str_mv SOUZA, Luciano
contributor_str_mv OLIVEIRA JUNIOR, Wilson Rosa de
BRITO, Cícero Carlos Ramos de
FERREIRA, Tiago Alessandro Espinola
RAMOS, Manoel Wallace Alves
SILVA, Frank Sinatra Gomes da
SILVA, Ronaldo Venâncio da
dc.subject.por.fl_str_mv Classe trigonométrica
Distribuição probabilística
Função univariada
topic Classe trigonométrica
Distribuição probabilística
Função univariada
Trigonometric classes
Probability distributions
Univariate functions
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.eng.fl_str_mv Trigonometric classes
Probability distributions
Univariate functions
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description In this thesis, four new probabilistic distribution classes are presented and investigated: sine, cosine, tangent and secant. For each of which a new kind of distribution was created, which were used for modelling real life data.By having an exponential distribution to compare the biases, a numerical simulation was obtained, making it possible to verify that the bias tends to zero as the sample size is increased. In addition to that, some numerical results for checking maximum likelihood estimates, as well as the results for finite samples, were obtained, just as much as several class properties and their respective distributions were also obtained, along with the expansions, maximum likelihood estimates, Fisher information, the first four moments, average, variance, skewness, and kurtosis, the generating function of moments and Renyi’s entropy. It was evidenced that all distributions have shown good fit when applied to real life data, when in comparison to other models. In order to compare the models, the Akaike Information Criterion (AIC), the Corrected Akaike Information Criterion (CAIC), the Bayesian Information Criterion (BIC), the Hannan Quinn Information Criterion (HQIC) were used, along with two other main statistic sources: Cramer-Von Mises and Anderson-Darling. As a final step, the results of the analyses and the comparison of the results are brought up, as well as a few directions for future works.
publishDate 2015
dc.date.issued.fl_str_mv 2015-11-13
dc.date.accessioned.fl_str_mv 2016-08-01T12:46:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA, Luciano. New trigonometric classes of probabilistic distributions. 2015. 216 f. Tese (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5127
identifier_str_mv SOUZA, Luciano. New trigonometric classes of probabilistic distributions. 2015. 216 f. Tese (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5127
dc.language.iso.fl_str_mv eng
language eng
dc.relation.program.fl_str_mv 768382242446187918
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -6774555140396120501
dc.relation.cnpq.fl_str_mv -5836407828185143517
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Biometria e Estatística Aplicada
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Estatística e Informática
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5127/1/license.txt
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5127/2/Luciano+Souza.pdf
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
75d7ff2adb5077203e1371925327b71e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102222443249664