Agrupamento em análise estatística de formas

Detalhes bibliográficos
Autor(a) principal: ARAÚJO, Luiz Henrique Gama Dore de
Data de Publicação: 2008
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5168
Resumo: In this work, the k-means algorithm proposed by Hartigan and Wong is adapted to the case of random element observations in general metric space. Simulation results show that the performance of the algorithm in the case when the metric space is the shape space of the plane configurations, is independent on the choice of the usual shape metrics, more precisely the regular, complete and partial Procrustes distance. Besides, this modified version of the algorithm, applied to the shape space with any of the three metrics, exhibits the same performance as the original algorithm applied to the partial tangent Procrustes coordinates. The current study was motivated by the problem of identification of species of half-beak fish Hemiramphus balao and Hemiramphus brasiliensis.Currently, the parameters used for identification of these species are subject to certain operational difficulties, which often result in erroneous classification of the specimens. The algorithm was used to perform clustering of shape configuration samples, and two groups with statistically distinct shapes have been identified. These groups exhibit a pronounced difference regarding position of the head in relation to the body: for one group the head is slightly inclined upwards, while for the other group the head is slightly inclined downwards. Observation of these characteristics on the photos of fish specimens on which the two species were correctly classified, leads to identification of group 1 as Hemirapmphus balao and group 2 as species Hemiramphus brasiliensis. Therefore, head position with relation to body (which represents information entirely on the specimen shape) represents a rather robust parameter for identification of species.
id URPE_764532c42e9fe9f8fedc8fd7a8a0e56c
oai_identifier_str oai:tede2:tede2/5168
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling STOSIC, BorkoAMARAL, GetúlioLESSA, Rosangela Paula TeixeiraFERRAZ, CristianoOLIVEIRA, Viviane Moraes dehttp://lattes.cnpq.br/0811554124395132ARAÚJO, Luiz Henrique Gama Dore de2016-08-03T13:41:09Z2008-02-27ARAÚJO, Luiz Henrique Gama Dore de. Agrupamento em análise estatística de formas. 2008. 40 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5168In this work, the k-means algorithm proposed by Hartigan and Wong is adapted to the case of random element observations in general metric space. Simulation results show that the performance of the algorithm in the case when the metric space is the shape space of the plane configurations, is independent on the choice of the usual shape metrics, more precisely the regular, complete and partial Procrustes distance. Besides, this modified version of the algorithm, applied to the shape space with any of the three metrics, exhibits the same performance as the original algorithm applied to the partial tangent Procrustes coordinates. The current study was motivated by the problem of identification of species of half-beak fish Hemiramphus balao and Hemiramphus brasiliensis.Currently, the parameters used for identification of these species are subject to certain operational difficulties, which often result in erroneous classification of the specimens. The algorithm was used to perform clustering of shape configuration samples, and two groups with statistically distinct shapes have been identified. These groups exhibit a pronounced difference regarding position of the head in relation to the body: for one group the head is slightly inclined upwards, while for the other group the head is slightly inclined downwards. Observation of these characteristics on the photos of fish specimens on which the two species were correctly classified, leads to identification of group 1 as Hemirapmphus balao and group 2 as species Hemiramphus brasiliensis. Therefore, head position with relation to body (which represents information entirely on the specimen shape) represents a rather robust parameter for identification of species.Neste trabalho, o algoritmo k-médias proposto por Hartigan e Wong foi adaptado para o caso no qual se tem observações de um elemento aleatório sobre um espaço métrico arbitrário. Resultados de simulações indicam que o desempenho do algoritmo, no caso em que o espaço métrico é o espaço das formas de configurações planas, é invariante com relação às três métricas de forma usuais a saber, as distâncias de Procrustes completa e parcial e a distância de Procrustes. Além disso, a versão modificada do algoritmo, quando aplicada no espaço das formas com qualquer uma destas três métricas, apresenta o mesmo desempenho do algoritmo original aplicado às coordenadas de Procrustes tangentes parciais. Um problema na identificação das espécies de peixes-agulhas Hemiramphus balao e Hemiramphus brasiliensis motivou este estudo. Atualmente, os parâmetros de identificação utilizados apresentam alguns problemas operacionais os quais permitem, em muitos casos, que peixes-agulha de uma espécie sejam classificados como da outra. O algoritmo foi utilizado para agrupar uma amostra das formas de configurações destes peixes e dois grupos com padrões de forma estatisticamente distintos foram encontrados. Estes grupos apresentaram uma diferença marcante na posição da cabeça com relação ao resto do corpo: no grupo 1 a cabeça é levemente inclinada para cima enquanto que no grupo 2 a cabeça é levemente inclinada para baixo. A observação destas características em fotos de peixes-agulha nas quais as duas espécies foram corretamente identificadas, permitiu constatar que o grupo 1 corresponde à espécie Hemirapmphus balao e o grupo 2 à espécie Hemiramphus brasiliensis. Dessa maneira, a posição da cabeça com relação ao resto do corpo (a qual é uma informação totalmente baseada na forma do peixe), pode ser utilizada como um parâmetro bastante robusto para identificação de sua espécie.Submitted by (ana.araujo@ufrpe.br) on 2016-08-03T13:41:09Z No. of bitstreams: 1 Luis Henrique Gama Dore de Araujo.pdf: 1262882 bytes, checksum: 228850aa4903df4934951d776241b9de (MD5)Made available in DSpace on 2016-08-03T13:41:09Z (GMT). No. of bitstreams: 1 Luis Henrique Gama Dore de Araujo.pdf: 1262882 bytes, checksum: 228850aa4903df4934951d776241b9de (MD5) Previous issue date: 2008-02-27application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Biometria e Estatística AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaAnálise estatísticaK-médiasAgrupamentosK-meansClusteringCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAAgrupamento em análise estatística de formasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis768382242446187918600600600-6774555140396120501-5836407828185143517info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5168/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALLuis Henrique Gama Dore de Araujo.pdfLuis Henrique Gama Dore de Araujo.pdfapplication/pdf1262882http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5168/2/Luis+Henrique+Gama+Dore+de+Araujo.pdf228850aa4903df4934951d776241b9deMD52tede2/51682016-08-09 12:30:00.817oai:tede2:tede2/5168Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:32:41.909979Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Agrupamento em análise estatística de formas
title Agrupamento em análise estatística de formas
spellingShingle Agrupamento em análise estatística de formas
ARAÚJO, Luiz Henrique Gama Dore de
Análise estatística
K-médias
Agrupamentos
K-means
Clustering
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Agrupamento em análise estatística de formas
title_full Agrupamento em análise estatística de formas
title_fullStr Agrupamento em análise estatística de formas
title_full_unstemmed Agrupamento em análise estatística de formas
title_sort Agrupamento em análise estatística de formas
author ARAÚJO, Luiz Henrique Gama Dore de
author_facet ARAÚJO, Luiz Henrique Gama Dore de
author_role author
dc.contributor.advisor1.fl_str_mv STOSIC, Borko
dc.contributor.advisor-co1.fl_str_mv AMARAL, Getúlio
dc.contributor.advisor-co2.fl_str_mv LESSA, Rosangela Paula Teixeira
dc.contributor.referee1.fl_str_mv FERRAZ, Cristiano
dc.contributor.referee2.fl_str_mv OLIVEIRA, Viviane Moraes de
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0811554124395132
dc.contributor.author.fl_str_mv ARAÚJO, Luiz Henrique Gama Dore de
contributor_str_mv STOSIC, Borko
AMARAL, Getúlio
LESSA, Rosangela Paula Teixeira
FERRAZ, Cristiano
OLIVEIRA, Viviane Moraes de
dc.subject.por.fl_str_mv Análise estatística
K-médias
Agrupamentos
topic Análise estatística
K-médias
Agrupamentos
K-means
Clustering
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.eng.fl_str_mv K-means
Clustering
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description In this work, the k-means algorithm proposed by Hartigan and Wong is adapted to the case of random element observations in general metric space. Simulation results show that the performance of the algorithm in the case when the metric space is the shape space of the plane configurations, is independent on the choice of the usual shape metrics, more precisely the regular, complete and partial Procrustes distance. Besides, this modified version of the algorithm, applied to the shape space with any of the three metrics, exhibits the same performance as the original algorithm applied to the partial tangent Procrustes coordinates. The current study was motivated by the problem of identification of species of half-beak fish Hemiramphus balao and Hemiramphus brasiliensis.Currently, the parameters used for identification of these species are subject to certain operational difficulties, which often result in erroneous classification of the specimens. The algorithm was used to perform clustering of shape configuration samples, and two groups with statistically distinct shapes have been identified. These groups exhibit a pronounced difference regarding position of the head in relation to the body: for one group the head is slightly inclined upwards, while for the other group the head is slightly inclined downwards. Observation of these characteristics on the photos of fish specimens on which the two species were correctly classified, leads to identification of group 1 as Hemirapmphus balao and group 2 as species Hemiramphus brasiliensis. Therefore, head position with relation to body (which represents information entirely on the specimen shape) represents a rather robust parameter for identification of species.
publishDate 2008
dc.date.issued.fl_str_mv 2008-02-27
dc.date.accessioned.fl_str_mv 2016-08-03T13:41:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ARAÚJO, Luiz Henrique Gama Dore de. Agrupamento em análise estatística de formas. 2008. 40 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5168
identifier_str_mv ARAÚJO, Luiz Henrique Gama Dore de. Agrupamento em análise estatística de formas. 2008. 40 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5168
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 768382242446187918
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -6774555140396120501
dc.relation.cnpq.fl_str_mv -5836407828185143517
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Biometria e Estatística Aplicada
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Estatística e Informática
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5168/1/license.txt
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5168/2/Luis+Henrique+Gama+Dore+de+Araujo.pdf
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
228850aa4903df4934951d776241b9de
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102222733705216