A função exponencial
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6703 |
Resumo: | This work is motivated by the Cauchy Functional Equation f (x + y) = f (x) .f (y), characteristic of the exponential function. To arrive at this equation we will begin our study of the definitions and statements of the Exponent Properties Real Power, particularly in the case in which the power exponent is irrational, besides doing a pedagogical proposal on teaching potentiation, Characterization of the Exponential Function and Functional Equation Linear Cauchy. |
id |
URPE_97464a16b4186f7dc793a98165173a40 |
---|---|
oai_identifier_str |
oai:tede2:tede2/6703 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
NEVES, Rodrigo José Gondimhttp://lattes.cnpq.br/5917402342146099DANTAS, Emerson de Oliveira2017-03-29T13:17:55Z2014-08-22DANTAS, Emerson de Oliveira. A função exponencial. 2014. 59 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6703This work is motivated by the Cauchy Functional Equation f (x + y) = f (x) .f (y), characteristic of the exponential function. To arrive at this equation we will begin our study of the definitions and statements of the Exponent Properties Real Power, particularly in the case in which the power exponent is irrational, besides doing a pedagogical proposal on teaching potentiation, Characterization of the Exponential Function and Functional Equation Linear Cauchy.Este trabalho tem por motivação a Equação Funcional de Cauchy f(x + y) = f(x).f(y), característica da Função Exponencial. Para chegarmos a essa equação iniciaremos o nosso estudo pelas definições e demonstrações das Propriedades da Potência de Expoente Real, destacando o caso em que a Potência tem Expoente Irracional, além de fazermos uma proposta pedagógica sobre o ensino de Potenciação, Caracterização da Função Exponencial e Equação Funcional Linear de CauchySubmitted by (lucia.rodrigues@ufrpe.br) on 2017-03-29T13:17:55Z No. of bitstreams: 1 Emerson de Oliveira Dantas.pdf: 321375 bytes, checksum: e7a1908ccaf8bcb9ee0df5fdb308d1d3 (MD5)Made available in DSpace on 2017-03-29T13:17:55Z (GMT). No. of bitstreams: 1 Emerson de Oliveira Dantas.pdf: 321375 bytes, checksum: e7a1908ccaf8bcb9ee0df5fdb308d1d3 (MD5) Previous issue date: 2014-08-22Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Matemática (PROFMAT)UFRPEBrasilDepartamento de MatemáticaExponential functionPotentiationEquação funcional de CauchyFunção exponencialPotenciaçãoÁlgebraCauchy functional equationCIENCIAS EXATAS E DA TERRA::MATEMATICAA função exponencialinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis7256355350190039125600600600600-6155401143231123537-70908234179844016942075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6703/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALEmerson de Oliveira Dantas.pdfEmerson de Oliveira Dantas.pdfapplication/pdf321375http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6703/2/Emerson+de+Oliveira+Dantas.pdfe7a1908ccaf8bcb9ee0df5fdb308d1d3MD52tede2/67032017-03-29 10:17:55.742oai:tede2:tede2/6703Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:34:42.294931Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
A função exponencial |
title |
A função exponencial |
spellingShingle |
A função exponencial DANTAS, Emerson de Oliveira Exponential function Potentiation Equação funcional de Cauchy Função exponencial Potenciação Álgebra Cauchy functional equation CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
A função exponencial |
title_full |
A função exponencial |
title_fullStr |
A função exponencial |
title_full_unstemmed |
A função exponencial |
title_sort |
A função exponencial |
author |
DANTAS, Emerson de Oliveira |
author_facet |
DANTAS, Emerson de Oliveira |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
NEVES, Rodrigo José Gondim |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5917402342146099 |
dc.contributor.author.fl_str_mv |
DANTAS, Emerson de Oliveira |
contributor_str_mv |
NEVES, Rodrigo José Gondim |
dc.subject.por.fl_str_mv |
Exponential function Potentiation Equação funcional de Cauchy Função exponencial Potenciação Álgebra |
topic |
Exponential function Potentiation Equação funcional de Cauchy Função exponencial Potenciação Álgebra Cauchy functional equation CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Cauchy functional equation |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
This work is motivated by the Cauchy Functional Equation f (x + y) = f (x) .f (y), characteristic of the exponential function. To arrive at this equation we will begin our study of the definitions and statements of the Exponent Properties Real Power, particularly in the case in which the power exponent is irrational, besides doing a pedagogical proposal on teaching potentiation, Characterization of the Exponential Function and Functional Equation Linear Cauchy. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-08-22 |
dc.date.accessioned.fl_str_mv |
2017-03-29T13:17:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
DANTAS, Emerson de Oliveira. A função exponencial. 2014. 59 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6703 |
identifier_str_mv |
DANTAS, Emerson de Oliveira. A função exponencial. 2014. 59 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6703 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
7256355350190039125 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-6155401143231123537 |
dc.relation.cnpq.fl_str_mv |
-7090823417984401694 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática (PROFMAT) |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Matemática |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6703/1/license.txt http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6703/2/Emerson+de+Oliveira+Dantas.pdf |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 e7a1908ccaf8bcb9ee0df5fdb308d1d3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102240988364800 |