A função exponencial

Detalhes bibliográficos
Autor(a) principal: DANTAS, Emerson de Oliveira
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6703
Resumo: This work is motivated by the Cauchy Functional Equation f (x + y) = f (x) .f (y), characteristic of the exponential function. To arrive at this equation we will begin our study of the definitions and statements of the Exponent Properties Real Power, particularly in the case in which the power exponent is irrational, besides doing a pedagogical proposal on teaching potentiation, Characterization of the Exponential Function and Functional Equation Linear Cauchy.
id URPE_97464a16b4186f7dc793a98165173a40
oai_identifier_str oai:tede2:tede2/6703
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling NEVES, Rodrigo José Gondimhttp://lattes.cnpq.br/5917402342146099DANTAS, Emerson de Oliveira2017-03-29T13:17:55Z2014-08-22DANTAS, Emerson de Oliveira. A função exponencial. 2014. 59 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6703This work is motivated by the Cauchy Functional Equation f (x + y) = f (x) .f (y), characteristic of the exponential function. To arrive at this equation we will begin our study of the definitions and statements of the Exponent Properties Real Power, particularly in the case in which the power exponent is irrational, besides doing a pedagogical proposal on teaching potentiation, Characterization of the Exponential Function and Functional Equation Linear Cauchy.Este trabalho tem por motivação a Equação Funcional de Cauchy f(x + y) = f(x).f(y), característica da Função Exponencial. Para chegarmos a essa equação iniciaremos o nosso estudo pelas definições e demonstrações das Propriedades da Potência de Expoente Real, destacando o caso em que a Potência tem Expoente Irracional, além de fazermos uma proposta pedagógica sobre o ensino de Potenciação, Caracterização da Função Exponencial e Equação Funcional Linear de CauchySubmitted by (lucia.rodrigues@ufrpe.br) on 2017-03-29T13:17:55Z No. of bitstreams: 1 Emerson de Oliveira Dantas.pdf: 321375 bytes, checksum: e7a1908ccaf8bcb9ee0df5fdb308d1d3 (MD5)Made available in DSpace on 2017-03-29T13:17:55Z (GMT). No. of bitstreams: 1 Emerson de Oliveira Dantas.pdf: 321375 bytes, checksum: e7a1908ccaf8bcb9ee0df5fdb308d1d3 (MD5) Previous issue date: 2014-08-22Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Matemática (PROFMAT)UFRPEBrasilDepartamento de MatemáticaExponential functionPotentiationEquação funcional de CauchyFunção exponencialPotenciaçãoÁlgebraCauchy functional equationCIENCIAS EXATAS E DA TERRA::MATEMATICAA função exponencialinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis7256355350190039125600600600600-6155401143231123537-70908234179844016942075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6703/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALEmerson de Oliveira Dantas.pdfEmerson de Oliveira Dantas.pdfapplication/pdf321375http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6703/2/Emerson+de+Oliveira+Dantas.pdfe7a1908ccaf8bcb9ee0df5fdb308d1d3MD52tede2/67032017-03-29 10:17:55.742oai:tede2:tede2/6703Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:34:42.294931Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv A função exponencial
title A função exponencial
spellingShingle A função exponencial
DANTAS, Emerson de Oliveira
Exponential function
Potentiation
Equação funcional de Cauchy
Função exponencial
Potenciação
Álgebra
Cauchy functional equation
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short A função exponencial
title_full A função exponencial
title_fullStr A função exponencial
title_full_unstemmed A função exponencial
title_sort A função exponencial
author DANTAS, Emerson de Oliveira
author_facet DANTAS, Emerson de Oliveira
author_role author
dc.contributor.advisor1.fl_str_mv NEVES, Rodrigo José Gondim
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5917402342146099
dc.contributor.author.fl_str_mv DANTAS, Emerson de Oliveira
contributor_str_mv NEVES, Rodrigo José Gondim
dc.subject.por.fl_str_mv Exponential function
Potentiation
Equação funcional de Cauchy
Função exponencial
Potenciação
Álgebra
topic Exponential function
Potentiation
Equação funcional de Cauchy
Função exponencial
Potenciação
Álgebra
Cauchy functional equation
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Cauchy functional equation
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description This work is motivated by the Cauchy Functional Equation f (x + y) = f (x) .f (y), characteristic of the exponential function. To arrive at this equation we will begin our study of the definitions and statements of the Exponent Properties Real Power, particularly in the case in which the power exponent is irrational, besides doing a pedagogical proposal on teaching potentiation, Characterization of the Exponential Function and Functional Equation Linear Cauchy.
publishDate 2014
dc.date.issued.fl_str_mv 2014-08-22
dc.date.accessioned.fl_str_mv 2017-03-29T13:17:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DANTAS, Emerson de Oliveira. A função exponencial. 2014. 59 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6703
identifier_str_mv DANTAS, Emerson de Oliveira. A função exponencial. 2014. 59 f. Dissertação (Programa de Pós-Graduação em Matemática (PROFMAT)) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6703
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 7256355350190039125
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -6155401143231123537
dc.relation.cnpq.fl_str_mv -7090823417984401694
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática (PROFMAT)
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Matemática
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6703/1/license.txt
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/6703/2/Emerson+de+Oliveira+Dantas.pdf
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
e7a1908ccaf8bcb9ee0df5fdb308d1d3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102240988364800