Uso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do Araripe

Detalhes bibliográficos
Autor(a) principal: JOSSEFA, Célio Gregório de Vasconcelos
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7405
Resumo: One of the ways to estimate volumes of the Eucalyptus trees with efficiency is to apply formulae that can make the estimates with precision. The objective of this work was to compare two ways of volume estimations: mathematical models through regression methods and the artificial neural networks. The data set used came from the second rotation of the experiment containing 15 clones, of Eucalyptus spp., implanted at the Experimental Station of the Agronomic Institute of Pernambuco (IPA), located in the Araripe region, Pernambuco, Brazil. The data set was composed of 2199 trees, cubed by the Smalian method. It was measured the total height, stem height and diameters at several position in the bole. For modeling, the trees were grouped using the Skott-Knott test, per clone and for all the clones together. The evaluation of Artificial Neural Network (ANN) adjustments considered two forms of input of the independent variables: a) volume sections and b) diameter at breast height (DBH) and total height (Ht). The performance of the mathematical volumetric models and ANN was based on Schlaegel fitting index (IAaj), root mean squared error in percentage (RMSE%) and graphic residuals analysis. According to the results, the Schumacher-Hall model presented better statistical performance for estimating the individual volume of Eucalyptus spp. The Artificial Neural Network considering the volume of the sections as input variables was superior when comparing with DBH and Ht as input variables. The Silva-Borders model and Artificial Neural Networks considering the volume of the sections as input variables are more practical to measure volumes because they do not consider the variable Ht, which is often difficult to measure in the field and costly.
id URPE_a6aa41d8c64bda98fc19500221b1852d
oai_identifier_str oai:tede2:tede2/7405
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling SILVA, José Antônio Aleixo daFERREIRA, Rinaldo Luiz CaracioloFERREIRA, Tiago Alessandro EspínolaLONGHI, Régis VillanovaSILVA, José Antônio Aleixo dahttp://lattes.cnpq.br/7478672704220334JOSSEFA, Célio Gregório de Vasconcelos2018-08-14T12:27:23Z2016-10-31JOSSEFA, Célio Gregório de Vasconcelos. Uso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do Araripe. 2016. 72 f. Dissertação (Programa de Pós-Graduação em Ciências Florestais) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7405One of the ways to estimate volumes of the Eucalyptus trees with efficiency is to apply formulae that can make the estimates with precision. The objective of this work was to compare two ways of volume estimations: mathematical models through regression methods and the artificial neural networks. The data set used came from the second rotation of the experiment containing 15 clones, of Eucalyptus spp., implanted at the Experimental Station of the Agronomic Institute of Pernambuco (IPA), located in the Araripe region, Pernambuco, Brazil. The data set was composed of 2199 trees, cubed by the Smalian method. It was measured the total height, stem height and diameters at several position in the bole. For modeling, the trees were grouped using the Skott-Knott test, per clone and for all the clones together. The evaluation of Artificial Neural Network (ANN) adjustments considered two forms of input of the independent variables: a) volume sections and b) diameter at breast height (DBH) and total height (Ht). The performance of the mathematical volumetric models and ANN was based on Schlaegel fitting index (IAaj), root mean squared error in percentage (RMSE%) and graphic residuals analysis. According to the results, the Schumacher-Hall model presented better statistical performance for estimating the individual volume of Eucalyptus spp. The Artificial Neural Network considering the volume of the sections as input variables was superior when comparing with DBH and Ht as input variables. The Silva-Borders model and Artificial Neural Networks considering the volume of the sections as input variables are more practical to measure volumes because they do not consider the variable Ht, which is often difficult to measure in the field and costly.Uma das maneiras de tornar mais eficiente a estimativa do volume das árvores de Eucalipto é a aplicação de ferramentas capazes de tornar as estimativas bem próximas do real. O objetivo deste trabalho foi comparar duas formas de estimativas de volume: modelos matemáticos por meio de métodos de regressão e redes neurais artificiais. O conjunto de dados utilizado resultou da segunda rotação do experimento contendo 15 clones, de Eucalyptus spp., Implantados na Estação Experimental do Instituto Agronômico de Pernambuco (IPA), localizada na região de Araripe, Pernambuco. O conjunto de dados foi composto por 2199 árvores, cubadas pelo método de Smalian. Foi mensurada a altura total, altura do fuste e diâmetros em várias posições no fuste. Para modelagem, as árvores foram agrupadas utilizando o teste de Skott-Knott, por clone e para todos os clones juntos. A avaliação dos ajustes da Rede Neural Artificial (RNA) considerou duas formas de entrada das variáveisindependentes: a) seções de volume e b) diâmetro à altura do peito (DAP) e altura total (Ht). O desempenho dos modelos matemáticos e RNA foi baseado no índice de adaptação de Schlaegel (𝐼𝐴𝑎𝑗), erro quadrático médio em percentual (RMSE%) e análise gráfica de resíduos. De acordo com os resultados obtidos, o modelo de Schumacher-Hall apresentou melhor desempenho estatístico para estimar o volume individual de Eucalyptus spp. A Rede Neural Artificial considerando o volume das seções como variáveis de entrada foi superior quando comparado com DAP e Ht como variáveis de entrada. O modelo de Silva-Borders e as Redes Neurais Artificiais considerando o volume das seções como variáveis de entrada são mais práticos para estimar o volume porque não consideram a variável Ht, que é muitas vezes difícil de medir no campo e onerosa.Submitted by Mario BC (mario@bc.ufrpe.br) on 2018-08-14T12:27:23Z No. of bitstreams: 1 Celio Gregorio de Vasconcelos Jossefa.pdf: 3004118 bytes, checksum: 8c715397c5713d59bdfbdc32bc130f6e (MD5)Made available in DSpace on 2018-08-14T12:27:23Z (GMT). No. of bitstreams: 1 Celio Gregorio de Vasconcelos Jossefa.pdf: 3004118 bytes, checksum: 8c715397c5713d59bdfbdc32bc130f6e (MD5) Previous issue date: 2016-10-31Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Ciências FlorestaisUFRPEBrasilDepartamento de Ciência FlorestalEucaliptoEucalyptusVolume do fusteModelo matemáticoCIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTALUso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do AraripeArtificial neural network and volumetric models for estimating the volume of Eucalyptus spp., in the coppicing regime at the Gypsum Pole of Araripeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis67087623920308873596006006006008320097514872741102-604049389552879283-2555911436985713659info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALCelio Gregorio de Vasconcelos Jossefa.pdfCelio Gregorio de Vasconcelos Jossefa.pdfapplication/pdf3004118http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7405/2/Celio+Gregorio+de+Vasconcelos+Jossefa.pdf8c715397c5713d59bdfbdc32bc130f6eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7405/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/74052018-08-14 09:27:23.779oai:tede2:tede2/7405Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:35:37.755784Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Uso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do Araripe
dc.title.alternative.eng.fl_str_mv Artificial neural network and volumetric models for estimating the volume of Eucalyptus spp., in the coppicing regime at the Gypsum Pole of Araripe
title Uso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do Araripe
spellingShingle Uso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do Araripe
JOSSEFA, Célio Gregório de Vasconcelos
Eucalipto
Eucalyptus
Volume do fuste
Modelo matemático
CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
title_short Uso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do Araripe
title_full Uso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do Araripe
title_fullStr Uso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do Araripe
title_full_unstemmed Uso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do Araripe
title_sort Uso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do Araripe
author JOSSEFA, Célio Gregório de Vasconcelos
author_facet JOSSEFA, Célio Gregório de Vasconcelos
author_role author
dc.contributor.advisor1.fl_str_mv SILVA, José Antônio Aleixo da
dc.contributor.advisor-co1.fl_str_mv FERREIRA, Rinaldo Luiz Caraciolo
dc.contributor.referee1.fl_str_mv FERREIRA, Tiago Alessandro Espínola
dc.contributor.referee2.fl_str_mv LONGHI, Régis Villanova
dc.contributor.referee3.fl_str_mv SILVA, José Antônio Aleixo da
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7478672704220334
dc.contributor.author.fl_str_mv JOSSEFA, Célio Gregório de Vasconcelos
contributor_str_mv SILVA, José Antônio Aleixo da
FERREIRA, Rinaldo Luiz Caraciolo
FERREIRA, Tiago Alessandro Espínola
LONGHI, Régis Villanova
SILVA, José Antônio Aleixo da
dc.subject.por.fl_str_mv Eucalipto
Eucalyptus
Volume do fuste
Modelo matemático
topic Eucalipto
Eucalyptus
Volume do fuste
Modelo matemático
CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
description One of the ways to estimate volumes of the Eucalyptus trees with efficiency is to apply formulae that can make the estimates with precision. The objective of this work was to compare two ways of volume estimations: mathematical models through regression methods and the artificial neural networks. The data set used came from the second rotation of the experiment containing 15 clones, of Eucalyptus spp., implanted at the Experimental Station of the Agronomic Institute of Pernambuco (IPA), located in the Araripe region, Pernambuco, Brazil. The data set was composed of 2199 trees, cubed by the Smalian method. It was measured the total height, stem height and diameters at several position in the bole. For modeling, the trees were grouped using the Skott-Knott test, per clone and for all the clones together. The evaluation of Artificial Neural Network (ANN) adjustments considered two forms of input of the independent variables: a) volume sections and b) diameter at breast height (DBH) and total height (Ht). The performance of the mathematical volumetric models and ANN was based on Schlaegel fitting index (IAaj), root mean squared error in percentage (RMSE%) and graphic residuals analysis. According to the results, the Schumacher-Hall model presented better statistical performance for estimating the individual volume of Eucalyptus spp. The Artificial Neural Network considering the volume of the sections as input variables was superior when comparing with DBH and Ht as input variables. The Silva-Borders model and Artificial Neural Networks considering the volume of the sections as input variables are more practical to measure volumes because they do not consider the variable Ht, which is often difficult to measure in the field and costly.
publishDate 2016
dc.date.issued.fl_str_mv 2016-10-31
dc.date.accessioned.fl_str_mv 2018-08-14T12:27:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv JOSSEFA, Célio Gregório de Vasconcelos. Uso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do Araripe. 2016. 72 f. Dissertação (Programa de Pós-Graduação em Ciências Florestais) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7405
identifier_str_mv JOSSEFA, Célio Gregório de Vasconcelos. Uso de redes neurais artificiais e métodos tradicionais na estimativa do volume do fuste de Eucalyptus spp., na região do Polo Gesseiro do Araripe. 2016. 72 f. Dissertação (Programa de Pós-Graduação em Ciências Florestais) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7405
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6708762392030887359
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv 8320097514872741102
dc.relation.cnpq.fl_str_mv -604049389552879283
dc.relation.sponsorship.fl_str_mv -2555911436985713659
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Florestais
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Ciência Florestal
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7405/2/Celio+Gregorio+de+Vasconcelos+Jossefa.pdf
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7405/1/license.txt
bitstream.checksum.fl_str_mv 8c715397c5713d59bdfbdc32bc130f6e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102250061692928