Modelo probabilístico de espalhamento de salmonelose em suínos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4872 |
Resumo: | The toxinfections caused by eating food contaminated with the bacillus of Salmonella represents a major concern for public health and for large producers of pork and derivatives. The presence of any Salmonella serovar in foods is enough to classify it as unfit for consumption, both domestically and internationally. The Salmonella is a bacterium that affects the animal’s intestinal tract, causing malaise, weight loss and death in consequence of infection. For a study of the dynamics of spreading disease in swine are developed mathematical models that provide the state of the population regarding the infection. The proposed model describes the dynamics of a population over time, divided into three classes of states regarding the presence or absence of the bacillus of Salmonella: Susceptible, Latent and Infected. This dynamics is governed by a system of ordinary differential equations, perturbed by the presence of random factors that pose a risk of infection to the farm. These factors are characterized as white noise whose impact on the dynamics is controlled by two constant functions, T1 and T2. The solution to the system of differential equations is obtained by the Runge-Kutta method of approximating 2a order, computationally implemented and simulated in different scenarios. The average rates of birth and contact were drawn from the literature and used as basis for parameters in the mathematical model. The results of computer simulations to calculate the probability of a farm infection levels reach any given time and observing the rules of management and creation. |
id |
URPE_a6b7474e88075860ab70d620372fbbae |
---|---|
oai_identifier_str |
oai:tede2:tede2/4872 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
CRISTINO, Cláudio Tadeuhttp://lattes.cnpq.br/8804513851154838SILVA, Danila Maria Almeida de Abreu2016-06-28T15:42:47Z2013-04-04SILVA, Danila Maria Almeida de Abreu. Modelo probabilístico de espalhamento de salmonelose em suínos. 2013. 74 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4872The toxinfections caused by eating food contaminated with the bacillus of Salmonella represents a major concern for public health and for large producers of pork and derivatives. The presence of any Salmonella serovar in foods is enough to classify it as unfit for consumption, both domestically and internationally. The Salmonella is a bacterium that affects the animal’s intestinal tract, causing malaise, weight loss and death in consequence of infection. For a study of the dynamics of spreading disease in swine are developed mathematical models that provide the state of the population regarding the infection. The proposed model describes the dynamics of a population over time, divided into three classes of states regarding the presence or absence of the bacillus of Salmonella: Susceptible, Latent and Infected. This dynamics is governed by a system of ordinary differential equations, perturbed by the presence of random factors that pose a risk of infection to the farm. These factors are characterized as white noise whose impact on the dynamics is controlled by two constant functions, T1 and T2. The solution to the system of differential equations is obtained by the Runge-Kutta method of approximating 2a order, computationally implemented and simulated in different scenarios. The average rates of birth and contact were drawn from the literature and used as basis for parameters in the mathematical model. The results of computer simulations to calculate the probability of a farm infection levels reach any given time and observing the rules of management and creation.As toxinfecções causadas por ingestão de alimentos contaminados pelo bacilo da Salmonella representam uma grande preocupação para a saúde púublica e para as grandes produtoras de carne suína e derivados. A presença de qualquer sorovar de Salmonella em alimentos é o suficiente para classificá-lo como impróprio para consumo, tanto no mercado nacional quanto internacional. A Salmonella é uma bactéria que afeta o trato intestinal do animal, causando indisposição, perda de peso e , na maioria dos casos, morte em consequência da infecção. Para um estudo da dinâmica de espalhamento da doença em suinos, são desenvolvidos modelos matemáticos que fornecem o estado da população em relação à infecção. O modelo proposto descreve a dinâmica de uma população ao longo do tempo, dividida em três classes de estados em relação a presença ou não do bacilo da Salmonella: Suscetível , Latente e Infectado . Esta dinâmica é regida por um sistema de equações diferenciais ordinárias, perturbadas pela presença de fatores aleatórios que representam risco de infecção para a granja. Esses fatores são caracterizados como ruído branco cujo impacto na dinâmica é controlado por duas funções constantes, T1 e T2. A solução para o sistema de equações diferenciais é obtido através do Método Runge-Kutta de aproximação de 2a ordem, implementado computacionalmente e simulado em diferentes cenários. A taxas médias de contato e natalidade foram retiradas da literatura e usadas como parâmetros base para o modelo matemático. O resultado das simulações permitiram calcular a probabilidade de uma granja atingir quaisquer níveis de infecção dado o tempo e observadas as normas de manejo e criação.Submitted by (ana.araujo@ufrpe.br) on 2016-06-28T15:42:47Z No. of bitstreams: 1 Danila Maria Almeida de Abreu Silva.pdf: 4560746 bytes, checksum: e5e26a41955264a16144ee035716e1fb (MD5)Made available in DSpace on 2016-06-28T15:42:47Z (GMT). No. of bitstreams: 1 Danila Maria Almeida de Abreu Silva.pdf: 4560746 bytes, checksum: e5e26a41955264a16144ee035716e1fb (MD5) Previous issue date: 2013-04-04application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Biometria e Estatística AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaSalmoneloseModelo probabilísticoEquação diferencialSalmonellosisProbabilistic modelDifferential equationsCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAModelo probabilístico de espalhamento de salmonelose em suínosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis768382242446187918600600600-6774555140396120501-5836407828185143517info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4872/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALDanila Maria Almeida de Abreu Silva.pdfDanila Maria Almeida de Abreu Silva.pdfapplication/pdf4560746http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4872/2/Danila+Maria+Almeida+de+Abreu+Silva.pdfe5e26a41955264a16144ee035716e1fbMD52tede2/48722016-07-25 12:24:53.2oai:tede2:tede2/4872Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:32:18.262425Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Modelo probabilístico de espalhamento de salmonelose em suínos |
title |
Modelo probabilístico de espalhamento de salmonelose em suínos |
spellingShingle |
Modelo probabilístico de espalhamento de salmonelose em suínos SILVA, Danila Maria Almeida de Abreu Salmonelose Modelo probabilístico Equação diferencial Salmonellosis Probabilistic model Differential equations CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
title_short |
Modelo probabilístico de espalhamento de salmonelose em suínos |
title_full |
Modelo probabilístico de espalhamento de salmonelose em suínos |
title_fullStr |
Modelo probabilístico de espalhamento de salmonelose em suínos |
title_full_unstemmed |
Modelo probabilístico de espalhamento de salmonelose em suínos |
title_sort |
Modelo probabilístico de espalhamento de salmonelose em suínos |
author |
SILVA, Danila Maria Almeida de Abreu |
author_facet |
SILVA, Danila Maria Almeida de Abreu |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
CRISTINO, Cláudio Tadeu |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8804513851154838 |
dc.contributor.author.fl_str_mv |
SILVA, Danila Maria Almeida de Abreu |
contributor_str_mv |
CRISTINO, Cláudio Tadeu |
dc.subject.por.fl_str_mv |
Salmonelose Modelo probabilístico Equação diferencial |
topic |
Salmonelose Modelo probabilístico Equação diferencial Salmonellosis Probabilistic model Differential equations CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
dc.subject.eng.fl_str_mv |
Salmonellosis Probabilistic model Differential equations |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
description |
The toxinfections caused by eating food contaminated with the bacillus of Salmonella represents a major concern for public health and for large producers of pork and derivatives. The presence of any Salmonella serovar in foods is enough to classify it as unfit for consumption, both domestically and internationally. The Salmonella is a bacterium that affects the animal’s intestinal tract, causing malaise, weight loss and death in consequence of infection. For a study of the dynamics of spreading disease in swine are developed mathematical models that provide the state of the population regarding the infection. The proposed model describes the dynamics of a population over time, divided into three classes of states regarding the presence or absence of the bacillus of Salmonella: Susceptible, Latent and Infected. This dynamics is governed by a system of ordinary differential equations, perturbed by the presence of random factors that pose a risk of infection to the farm. These factors are characterized as white noise whose impact on the dynamics is controlled by two constant functions, T1 and T2. The solution to the system of differential equations is obtained by the Runge-Kutta method of approximating 2a order, computationally implemented and simulated in different scenarios. The average rates of birth and contact were drawn from the literature and used as basis for parameters in the mathematical model. The results of computer simulations to calculate the probability of a farm infection levels reach any given time and observing the rules of management and creation. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-04-04 |
dc.date.accessioned.fl_str_mv |
2016-06-28T15:42:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Danila Maria Almeida de Abreu. Modelo probabilístico de espalhamento de salmonelose em suínos. 2013. 74 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4872 |
identifier_str_mv |
SILVA, Danila Maria Almeida de Abreu. Modelo probabilístico de espalhamento de salmonelose em suínos. 2013. 74 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4872 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
768382242446187918 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
-6774555140396120501 |
dc.relation.cnpq.fl_str_mv |
-5836407828185143517 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Biometria e Estatística Aplicada |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Estatística e Informática |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4872/1/license.txt http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4872/2/Danila+Maria+Almeida+de+Abreu+Silva.pdf |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 e5e26a41955264a16144ee035716e1fb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102219609997312 |