Modelo probabilístico de espalhamento de salmonelose em suínos

Detalhes bibliográficos
Autor(a) principal: SILVA, Danila Maria Almeida de Abreu
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4872
Resumo: The toxinfections caused by eating food contaminated with the bacillus of Salmonella represents a major concern for public health and for large producers of pork and derivatives. The presence of any Salmonella serovar in foods is enough to classify it as unfit for consumption, both domestically and internationally. The Salmonella is a bacterium that affects the animal’s intestinal tract, causing malaise, weight loss and death in consequence of infection. For a study of the dynamics of spreading disease in swine are developed mathematical models that provide the state of the population regarding the infection. The proposed model describes the dynamics of a population over time, divided into three classes of states regarding the presence or absence of the bacillus of Salmonella: Susceptible, Latent and Infected. This dynamics is governed by a system of ordinary differential equations, perturbed by the presence of random factors that pose a risk of infection to the farm. These factors are characterized as white noise whose impact on the dynamics is controlled by two constant functions, T1 and T2. The solution to the system of differential equations is obtained by the Runge-Kutta method of approximating 2a order, computationally implemented and simulated in different scenarios. The average rates of birth and contact were drawn from the literature and used as basis for parameters in the mathematical model. The results of computer simulations to calculate the probability of a farm infection levels reach any given time and observing the rules of management and creation.
id URPE_a6b7474e88075860ab70d620372fbbae
oai_identifier_str oai:tede2:tede2/4872
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling CRISTINO, Cláudio Tadeuhttp://lattes.cnpq.br/8804513851154838SILVA, Danila Maria Almeida de Abreu2016-06-28T15:42:47Z2013-04-04SILVA, Danila Maria Almeida de Abreu. Modelo probabilístico de espalhamento de salmonelose em suínos. 2013. 74 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4872The toxinfections caused by eating food contaminated with the bacillus of Salmonella represents a major concern for public health and for large producers of pork and derivatives. The presence of any Salmonella serovar in foods is enough to classify it as unfit for consumption, both domestically and internationally. The Salmonella is a bacterium that affects the animal’s intestinal tract, causing malaise, weight loss and death in consequence of infection. For a study of the dynamics of spreading disease in swine are developed mathematical models that provide the state of the population regarding the infection. The proposed model describes the dynamics of a population over time, divided into three classes of states regarding the presence or absence of the bacillus of Salmonella: Susceptible, Latent and Infected. This dynamics is governed by a system of ordinary differential equations, perturbed by the presence of random factors that pose a risk of infection to the farm. These factors are characterized as white noise whose impact on the dynamics is controlled by two constant functions, T1 and T2. The solution to the system of differential equations is obtained by the Runge-Kutta method of approximating 2a order, computationally implemented and simulated in different scenarios. The average rates of birth and contact were drawn from the literature and used as basis for parameters in the mathematical model. The results of computer simulations to calculate the probability of a farm infection levels reach any given time and observing the rules of management and creation.As toxinfecções causadas por ingestão de alimentos contaminados pelo bacilo da Salmonella representam uma grande preocupação para a saúde púublica e para as grandes produtoras de carne suína e derivados. A presença de qualquer sorovar de Salmonella em alimentos é o suficiente para classificá-lo como impróprio para consumo, tanto no mercado nacional quanto internacional. A Salmonella é uma bactéria que afeta o trato intestinal do animal, causando indisposição, perda de peso e , na maioria dos casos, morte em consequência da infecção. Para um estudo da dinâmica de espalhamento da doença em suinos, são desenvolvidos modelos matemáticos que fornecem o estado da população em relação à infecção. O modelo proposto descreve a dinâmica de uma população ao longo do tempo, dividida em três classes de estados em relação a presença ou não do bacilo da Salmonella: Suscetível , Latente e Infectado . Esta dinâmica é regida por um sistema de equações diferenciais ordinárias, perturbadas pela presença de fatores aleatórios que representam risco de infecção para a granja. Esses fatores são caracterizados como ruído branco cujo impacto na dinâmica é controlado por duas funções constantes, T1 e T2. A solução para o sistema de equações diferenciais é obtido através do Método Runge-Kutta de aproximação de 2a ordem, implementado computacionalmente e simulado em diferentes cenários. A taxas médias de contato e natalidade foram retiradas da literatura e usadas como parâmetros base para o modelo matemático. O resultado das simulações permitiram calcular a probabilidade de uma granja atingir quaisquer níveis de infecção dado o tempo e observadas as normas de manejo e criação.Submitted by (ana.araujo@ufrpe.br) on 2016-06-28T15:42:47Z No. of bitstreams: 1 Danila Maria Almeida de Abreu Silva.pdf: 4560746 bytes, checksum: e5e26a41955264a16144ee035716e1fb (MD5)Made available in DSpace on 2016-06-28T15:42:47Z (GMT). No. of bitstreams: 1 Danila Maria Almeida de Abreu Silva.pdf: 4560746 bytes, checksum: e5e26a41955264a16144ee035716e1fb (MD5) Previous issue date: 2013-04-04application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Biometria e Estatística AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaSalmoneloseModelo probabilísticoEquação diferencialSalmonellosisProbabilistic modelDifferential equationsCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAModelo probabilístico de espalhamento de salmonelose em suínosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis768382242446187918600600600-6774555140396120501-5836407828185143517info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4872/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALDanila Maria Almeida de Abreu Silva.pdfDanila Maria Almeida de Abreu Silva.pdfapplication/pdf4560746http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4872/2/Danila+Maria+Almeida+de+Abreu+Silva.pdfe5e26a41955264a16144ee035716e1fbMD52tede2/48722016-07-25 12:24:53.2oai:tede2:tede2/4872Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:32:18.262425Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Modelo probabilístico de espalhamento de salmonelose em suínos
title Modelo probabilístico de espalhamento de salmonelose em suínos
spellingShingle Modelo probabilístico de espalhamento de salmonelose em suínos
SILVA, Danila Maria Almeida de Abreu
Salmonelose
Modelo probabilístico
Equação diferencial
Salmonellosis
Probabilistic model
Differential equations
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Modelo probabilístico de espalhamento de salmonelose em suínos
title_full Modelo probabilístico de espalhamento de salmonelose em suínos
title_fullStr Modelo probabilístico de espalhamento de salmonelose em suínos
title_full_unstemmed Modelo probabilístico de espalhamento de salmonelose em suínos
title_sort Modelo probabilístico de espalhamento de salmonelose em suínos
author SILVA, Danila Maria Almeida de Abreu
author_facet SILVA, Danila Maria Almeida de Abreu
author_role author
dc.contributor.advisor1.fl_str_mv CRISTINO, Cláudio Tadeu
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8804513851154838
dc.contributor.author.fl_str_mv SILVA, Danila Maria Almeida de Abreu
contributor_str_mv CRISTINO, Cláudio Tadeu
dc.subject.por.fl_str_mv Salmonelose
Modelo probabilístico
Equação diferencial
topic Salmonelose
Modelo probabilístico
Equação diferencial
Salmonellosis
Probabilistic model
Differential equations
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.eng.fl_str_mv Salmonellosis
Probabilistic model
Differential equations
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description The toxinfections caused by eating food contaminated with the bacillus of Salmonella represents a major concern for public health and for large producers of pork and derivatives. The presence of any Salmonella serovar in foods is enough to classify it as unfit for consumption, both domestically and internationally. The Salmonella is a bacterium that affects the animal’s intestinal tract, causing malaise, weight loss and death in consequence of infection. For a study of the dynamics of spreading disease in swine are developed mathematical models that provide the state of the population regarding the infection. The proposed model describes the dynamics of a population over time, divided into three classes of states regarding the presence or absence of the bacillus of Salmonella: Susceptible, Latent and Infected. This dynamics is governed by a system of ordinary differential equations, perturbed by the presence of random factors that pose a risk of infection to the farm. These factors are characterized as white noise whose impact on the dynamics is controlled by two constant functions, T1 and T2. The solution to the system of differential equations is obtained by the Runge-Kutta method of approximating 2a order, computationally implemented and simulated in different scenarios. The average rates of birth and contact were drawn from the literature and used as basis for parameters in the mathematical model. The results of computer simulations to calculate the probability of a farm infection levels reach any given time and observing the rules of management and creation.
publishDate 2013
dc.date.issued.fl_str_mv 2013-04-04
dc.date.accessioned.fl_str_mv 2016-06-28T15:42:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Danila Maria Almeida de Abreu. Modelo probabilístico de espalhamento de salmonelose em suínos. 2013. 74 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4872
identifier_str_mv SILVA, Danila Maria Almeida de Abreu. Modelo probabilístico de espalhamento de salmonelose em suínos. 2013. 74 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4872
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 768382242446187918
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -6774555140396120501
dc.relation.cnpq.fl_str_mv -5836407828185143517
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Biometria e Estatística Aplicada
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Estatística e Informática
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4872/1/license.txt
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4872/2/Danila+Maria+Almeida+de+Abreu+Silva.pdf
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
e5e26a41955264a16144ee035716e1fb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102219609997312