Análise multifractal da velocidade do vento em Pernambuco

Detalhes bibliográficos
Autor(a) principal: FIGUEIRÊDO, Bárbara Camboim Lopes de
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4526
Resumo: The study of climate has great importance, given that a variation of climatic elements affect the economy of a certain region and life of the inhabitants. Climate variables temperature, humidity, atmospheric pressure, solar radiation, precipitation and wind can be affected by geophysical and environmental factors such as latitude, altitude, air mass, proximity to sea, sea currents and vegetation. Wind is the most complex climate element representing the natural phenomenon of turbulence, it is characterized by high temporal and spatial variability. Wind is generated by atmospheric air mass movement, and has influence on various environmental phenomena such as soil erosion, pollutant dispersal and transport of pollen and seeds. Knowing wind speed temporal and spatial distribution is crucial to evaluate the potential for generation of eolic energy. In this work we study long-term correlations in wind speed temporal series registered at twelve meteorological stations in the state of Pernambuco, Brazil. To this end we apply Multifractal Detrended Fluctuation Analysis (MF-DFA) on hourly wind speed data for the period 2008-2011. All the analyzed series exhibit multifractal properties with generalized Hurst exponents above 0.5 indicating persistent temporal dynamics for both, small and large fluctuations. We also calculate other multifractal measures Rényi exponent and singularity spectrum, and complexity parameters, position of maximum, width and asymmetry of multifractral spectrum. No correlation was detected between complexity parameters and the geographic parameters longitude, latitude and altitude of the station, except for asymmetry of multifractal spectrum: negative correlation with longitude for maximum wind speed and negative correlation with latitude for average wind speed. However for all stations the strength of multifractality (indicated by width of multifractal spectrum) is greater for maximum wind speed then for average wind speed. These results contribute to a better understanding of the nature of stochastic processes governing wind dynamics which is necessary for development of more accurate predictive models for wind speed temporal variability and diverse phenomena influenced by wind.
id URPE_a88491c3eff7e983dd02a63f54b6ffb2
oai_identifier_str oai:tede2:tede2/4526
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling STOSIC, TatijanaSTOSIC, BorkoCUNHA FILHO, MoacyrFIGUEIRÊDO, Pedro Hugo dehttp://lattes.cnpq.br/7093624677195884FIGUEIRÊDO, Bárbara Camboim Lopes de2016-05-25T14:39:16Z2014-02-24FIGUEIRÊDO, Bárbara Camboim Lopes de. Análise multifractal da velocidade do vento em Pernambuco. 2014. 76 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4526The study of climate has great importance, given that a variation of climatic elements affect the economy of a certain region and life of the inhabitants. Climate variables temperature, humidity, atmospheric pressure, solar radiation, precipitation and wind can be affected by geophysical and environmental factors such as latitude, altitude, air mass, proximity to sea, sea currents and vegetation. Wind is the most complex climate element representing the natural phenomenon of turbulence, it is characterized by high temporal and spatial variability. Wind is generated by atmospheric air mass movement, and has influence on various environmental phenomena such as soil erosion, pollutant dispersal and transport of pollen and seeds. Knowing wind speed temporal and spatial distribution is crucial to evaluate the potential for generation of eolic energy. In this work we study long-term correlations in wind speed temporal series registered at twelve meteorological stations in the state of Pernambuco, Brazil. To this end we apply Multifractal Detrended Fluctuation Analysis (MF-DFA) on hourly wind speed data for the period 2008-2011. All the analyzed series exhibit multifractal properties with generalized Hurst exponents above 0.5 indicating persistent temporal dynamics for both, small and large fluctuations. We also calculate other multifractal measures Rényi exponent and singularity spectrum, and complexity parameters, position of maximum, width and asymmetry of multifractral spectrum. No correlation was detected between complexity parameters and the geographic parameters longitude, latitude and altitude of the station, except for asymmetry of multifractal spectrum: negative correlation with longitude for maximum wind speed and negative correlation with latitude for average wind speed. However for all stations the strength of multifractality (indicated by width of multifractal spectrum) is greater for maximum wind speed then for average wind speed. These results contribute to a better understanding of the nature of stochastic processes governing wind dynamics which is necessary for development of more accurate predictive models for wind speed temporal variability and diverse phenomena influenced by wind.O estudo do clima tem grande importância visto que a variação em elementos climáticos afeta a economia de uma região e a vida das pessoas que ali habitam. As variáveis climáticas temperatura, umidade, pressão atmosférica, radiação solar, precipitação e vento podem ser influenciadas por diversos fatores, geofísicos e ambientais, tais como latitude, altitude, massas de ar, continentalidade e maritmidade, relevo e vegetação. Um dos mais complexos elementos do clima é o vento, pelo fato de representar um fenômeno natural de turbulência, caracterizado por uma grande variabilidade temporal e espacial. O vento é gerado pelo movimento das massas de ar e pode influenciar vários fenômenos ambientais como erosão do solo, dispersão de poluentes e transporte de pólen e sementes. O conhecimento da distribuição temporal e espacial da velocidade do vento é crucial para avaliação do potencial eólico de uma região. Neste trabalho estudaram-se correlações de longo alcance das séries temporais de velocidade do vento registradas em 12 estações meteorológicas durante o período de 2008 a 2011 no estado de Pernambuco aplicando-se o método Multifractal Detrended Fluctuation Analysis (MF-DFA) nas séries temporais horárias. Todas as séries analisadas mostram as propriedades multifractais com valores de expoente generalizado de Hurst acima de 0,5 indicando uma dinâmica persistente para pequenas e grande flutuações. Foram calculadas também as outras medidas multifractais, o expoente Rényi e o espectro multifractal bem como os parâmetros de complexidade: posição do máximo, largura e assimetria do espectro multifractal. Não foram encontradas correlação entre os parâmetros de complexidade e as coordenadas geográficas: longitude, latitude e altitude, exceto a medida de assimetria do espectro multifractal: correlação negativa entre a rajada e longitude e entre velocidade e latitude. Para todas estações as larguras do espectro multifractal foram maiores para a rajada que para a velocidade, indicando uma multifractalidade mais forte. Estes resultados contribuem para uma melhor compreensão da natureza dos processos estocásticos geradores da dinâmica do vento, necessária para o desenvolvimento de modelos confiáveis para predição da variabilidade temporal do vento e dos diversos fenômenos influenciados pelo mesmo.Submitted by (ana.araujo@ufrpe.br) on 2016-05-25T14:39:16Z No. of bitstreams: 1 Barbara Camboim Lopes de Figueiredo.pdf: 2032958 bytes, checksum: d463c6ab534a96f1ce5aac33c2dde210 (MD5)Made available in DSpace on 2016-05-25T14:39:16Z (GMT). No. of bitstreams: 1 Barbara Camboim Lopes de Figueiredo.pdf: 2032958 bytes, checksum: d463c6ab534a96f1ce5aac33c2dde210 (MD5) Previous issue date: 2014-02-24Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Biometria e Estatística AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaVelocidade do ventoVariáveis climáticasCorrelações de longo alcanceMultifractalidadeWind speedClimatic variablesLong range correlationMultifractal Detrended Fluctuation AnalysisMultifractalityCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAAnálise multifractal da velocidade do vento em Pernambucoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis768382242446187918600600600600-6774555140396120501-58364078281851435173590462550136975366info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4526/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51ORIGINALBarbara Camboim Lopes de Figueiredo.pdfBarbara Camboim Lopes de Figueiredo.pdfapplication/pdf2032958http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4526/2/Barbara+Camboim+Lopes+de+Figueiredo.pdfd463c6ab534a96f1ce5aac33c2dde210MD52tede2/45262016-08-04 08:54:07.547oai:tede2:tede2/4526Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:31:53.246694Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Análise multifractal da velocidade do vento em Pernambuco
title Análise multifractal da velocidade do vento em Pernambuco
spellingShingle Análise multifractal da velocidade do vento em Pernambuco
FIGUEIRÊDO, Bárbara Camboim Lopes de
Velocidade do vento
Variáveis climáticas
Correlações de longo alcance
Multifractalidade
Wind speed
Climatic variables
Long range correlation
Multifractal Detrended Fluctuation Analysis
Multifractality
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Análise multifractal da velocidade do vento em Pernambuco
title_full Análise multifractal da velocidade do vento em Pernambuco
title_fullStr Análise multifractal da velocidade do vento em Pernambuco
title_full_unstemmed Análise multifractal da velocidade do vento em Pernambuco
title_sort Análise multifractal da velocidade do vento em Pernambuco
author FIGUEIRÊDO, Bárbara Camboim Lopes de
author_facet FIGUEIRÊDO, Bárbara Camboim Lopes de
author_role author
dc.contributor.advisor1.fl_str_mv STOSIC, Tatijana
dc.contributor.advisor-co1.fl_str_mv STOSIC, Borko
dc.contributor.referee1.fl_str_mv CUNHA FILHO, Moacyr
dc.contributor.referee2.fl_str_mv FIGUEIRÊDO, Pedro Hugo de
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7093624677195884
dc.contributor.author.fl_str_mv FIGUEIRÊDO, Bárbara Camboim Lopes de
contributor_str_mv STOSIC, Tatijana
STOSIC, Borko
CUNHA FILHO, Moacyr
FIGUEIRÊDO, Pedro Hugo de
dc.subject.por.fl_str_mv Velocidade do vento
Variáveis climáticas
Correlações de longo alcance
Multifractalidade
topic Velocidade do vento
Variáveis climáticas
Correlações de longo alcance
Multifractalidade
Wind speed
Climatic variables
Long range correlation
Multifractal Detrended Fluctuation Analysis
Multifractality
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.eng.fl_str_mv Wind speed
Climatic variables
Long range correlation
Multifractal Detrended Fluctuation Analysis
Multifractality
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description The study of climate has great importance, given that a variation of climatic elements affect the economy of a certain region and life of the inhabitants. Climate variables temperature, humidity, atmospheric pressure, solar radiation, precipitation and wind can be affected by geophysical and environmental factors such as latitude, altitude, air mass, proximity to sea, sea currents and vegetation. Wind is the most complex climate element representing the natural phenomenon of turbulence, it is characterized by high temporal and spatial variability. Wind is generated by atmospheric air mass movement, and has influence on various environmental phenomena such as soil erosion, pollutant dispersal and transport of pollen and seeds. Knowing wind speed temporal and spatial distribution is crucial to evaluate the potential for generation of eolic energy. In this work we study long-term correlations in wind speed temporal series registered at twelve meteorological stations in the state of Pernambuco, Brazil. To this end we apply Multifractal Detrended Fluctuation Analysis (MF-DFA) on hourly wind speed data for the period 2008-2011. All the analyzed series exhibit multifractal properties with generalized Hurst exponents above 0.5 indicating persistent temporal dynamics for both, small and large fluctuations. We also calculate other multifractal measures Rényi exponent and singularity spectrum, and complexity parameters, position of maximum, width and asymmetry of multifractral spectrum. No correlation was detected between complexity parameters and the geographic parameters longitude, latitude and altitude of the station, except for asymmetry of multifractal spectrum: negative correlation with longitude for maximum wind speed and negative correlation with latitude for average wind speed. However for all stations the strength of multifractality (indicated by width of multifractal spectrum) is greater for maximum wind speed then for average wind speed. These results contribute to a better understanding of the nature of stochastic processes governing wind dynamics which is necessary for development of more accurate predictive models for wind speed temporal variability and diverse phenomena influenced by wind.
publishDate 2014
dc.date.issued.fl_str_mv 2014-02-24
dc.date.accessioned.fl_str_mv 2016-05-25T14:39:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FIGUEIRÊDO, Bárbara Camboim Lopes de. Análise multifractal da velocidade do vento em Pernambuco. 2014. 76 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4526
identifier_str_mv FIGUEIRÊDO, Bárbara Camboim Lopes de. Análise multifractal da velocidade do vento em Pernambuco. 2014. 76 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4526
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 768382242446187918
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -6774555140396120501
dc.relation.cnpq.fl_str_mv -5836407828185143517
dc.relation.sponsorship.fl_str_mv 3590462550136975366
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Biometria e Estatística Aplicada
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Estatística e Informática
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4526/1/license.txt
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4526/2/Barbara+Camboim+Lopes+de+Figueiredo.pdf
bitstream.checksum.fl_str_mv 7b5ba3d2445355f386edab96125d42b7
d463c6ab534a96f1ce5aac33c2dde210
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102215991361536