Análise multifractal da velocidade do vento em Pernambuco
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4526 |
Resumo: | The study of climate has great importance, given that a variation of climatic elements affect the economy of a certain region and life of the inhabitants. Climate variables temperature, humidity, atmospheric pressure, solar radiation, precipitation and wind can be affected by geophysical and environmental factors such as latitude, altitude, air mass, proximity to sea, sea currents and vegetation. Wind is the most complex climate element representing the natural phenomenon of turbulence, it is characterized by high temporal and spatial variability. Wind is generated by atmospheric air mass movement, and has influence on various environmental phenomena such as soil erosion, pollutant dispersal and transport of pollen and seeds. Knowing wind speed temporal and spatial distribution is crucial to evaluate the potential for generation of eolic energy. In this work we study long-term correlations in wind speed temporal series registered at twelve meteorological stations in the state of Pernambuco, Brazil. To this end we apply Multifractal Detrended Fluctuation Analysis (MF-DFA) on hourly wind speed data for the period 2008-2011. All the analyzed series exhibit multifractal properties with generalized Hurst exponents above 0.5 indicating persistent temporal dynamics for both, small and large fluctuations. We also calculate other multifractal measures Rényi exponent and singularity spectrum, and complexity parameters, position of maximum, width and asymmetry of multifractral spectrum. No correlation was detected between complexity parameters and the geographic parameters longitude, latitude and altitude of the station, except for asymmetry of multifractal spectrum: negative correlation with longitude for maximum wind speed and negative correlation with latitude for average wind speed. However for all stations the strength of multifractality (indicated by width of multifractal spectrum) is greater for maximum wind speed then for average wind speed. These results contribute to a better understanding of the nature of stochastic processes governing wind dynamics which is necessary for development of more accurate predictive models for wind speed temporal variability and diverse phenomena influenced by wind. |
id |
URPE_a88491c3eff7e983dd02a63f54b6ffb2 |
---|---|
oai_identifier_str |
oai:tede2:tede2/4526 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
STOSIC, TatijanaSTOSIC, BorkoCUNHA FILHO, MoacyrFIGUEIRÊDO, Pedro Hugo dehttp://lattes.cnpq.br/7093624677195884FIGUEIRÊDO, Bárbara Camboim Lopes de2016-05-25T14:39:16Z2014-02-24FIGUEIRÊDO, Bárbara Camboim Lopes de. Análise multifractal da velocidade do vento em Pernambuco. 2014. 76 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4526The study of climate has great importance, given that a variation of climatic elements affect the economy of a certain region and life of the inhabitants. Climate variables temperature, humidity, atmospheric pressure, solar radiation, precipitation and wind can be affected by geophysical and environmental factors such as latitude, altitude, air mass, proximity to sea, sea currents and vegetation. Wind is the most complex climate element representing the natural phenomenon of turbulence, it is characterized by high temporal and spatial variability. Wind is generated by atmospheric air mass movement, and has influence on various environmental phenomena such as soil erosion, pollutant dispersal and transport of pollen and seeds. Knowing wind speed temporal and spatial distribution is crucial to evaluate the potential for generation of eolic energy. In this work we study long-term correlations in wind speed temporal series registered at twelve meteorological stations in the state of Pernambuco, Brazil. To this end we apply Multifractal Detrended Fluctuation Analysis (MF-DFA) on hourly wind speed data for the period 2008-2011. All the analyzed series exhibit multifractal properties with generalized Hurst exponents above 0.5 indicating persistent temporal dynamics for both, small and large fluctuations. We also calculate other multifractal measures Rényi exponent and singularity spectrum, and complexity parameters, position of maximum, width and asymmetry of multifractral spectrum. No correlation was detected between complexity parameters and the geographic parameters longitude, latitude and altitude of the station, except for asymmetry of multifractal spectrum: negative correlation with longitude for maximum wind speed and negative correlation with latitude for average wind speed. However for all stations the strength of multifractality (indicated by width of multifractal spectrum) is greater for maximum wind speed then for average wind speed. These results contribute to a better understanding of the nature of stochastic processes governing wind dynamics which is necessary for development of more accurate predictive models for wind speed temporal variability and diverse phenomena influenced by wind.O estudo do clima tem grande importância visto que a variação em elementos climáticos afeta a economia de uma região e a vida das pessoas que ali habitam. As variáveis climáticas temperatura, umidade, pressão atmosférica, radiação solar, precipitação e vento podem ser influenciadas por diversos fatores, geofísicos e ambientais, tais como latitude, altitude, massas de ar, continentalidade e maritmidade, relevo e vegetação. Um dos mais complexos elementos do clima é o vento, pelo fato de representar um fenômeno natural de turbulência, caracterizado por uma grande variabilidade temporal e espacial. O vento é gerado pelo movimento das massas de ar e pode influenciar vários fenômenos ambientais como erosão do solo, dispersão de poluentes e transporte de pólen e sementes. O conhecimento da distribuição temporal e espacial da velocidade do vento é crucial para avaliação do potencial eólico de uma região. Neste trabalho estudaram-se correlações de longo alcance das séries temporais de velocidade do vento registradas em 12 estações meteorológicas durante o período de 2008 a 2011 no estado de Pernambuco aplicando-se o método Multifractal Detrended Fluctuation Analysis (MF-DFA) nas séries temporais horárias. Todas as séries analisadas mostram as propriedades multifractais com valores de expoente generalizado de Hurst acima de 0,5 indicando uma dinâmica persistente para pequenas e grande flutuações. Foram calculadas também as outras medidas multifractais, o expoente Rényi e o espectro multifractal bem como os parâmetros de complexidade: posição do máximo, largura e assimetria do espectro multifractal. Não foram encontradas correlação entre os parâmetros de complexidade e as coordenadas geográficas: longitude, latitude e altitude, exceto a medida de assimetria do espectro multifractal: correlação negativa entre a rajada e longitude e entre velocidade e latitude. Para todas estações as larguras do espectro multifractal foram maiores para a rajada que para a velocidade, indicando uma multifractalidade mais forte. Estes resultados contribuem para uma melhor compreensão da natureza dos processos estocásticos geradores da dinâmica do vento, necessária para o desenvolvimento de modelos confiáveis para predição da variabilidade temporal do vento e dos diversos fenômenos influenciados pelo mesmo.Submitted by (ana.araujo@ufrpe.br) on 2016-05-25T14:39:16Z No. of bitstreams: 1 Barbara Camboim Lopes de Figueiredo.pdf: 2032958 bytes, checksum: d463c6ab534a96f1ce5aac33c2dde210 (MD5)Made available in DSpace on 2016-05-25T14:39:16Z (GMT). No. of bitstreams: 1 Barbara Camboim Lopes de Figueiredo.pdf: 2032958 bytes, checksum: d463c6ab534a96f1ce5aac33c2dde210 (MD5) Previous issue date: 2014-02-24Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Biometria e Estatística AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaVelocidade do ventoVariáveis climáticasCorrelações de longo alcanceMultifractalidadeWind speedClimatic variablesLong range correlationMultifractal Detrended Fluctuation AnalysisMultifractalityCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAAnálise multifractal da velocidade do vento em Pernambucoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis768382242446187918600600600600-6774555140396120501-58364078281851435173590462550136975366info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4526/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51ORIGINALBarbara Camboim Lopes de Figueiredo.pdfBarbara Camboim Lopes de Figueiredo.pdfapplication/pdf2032958http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4526/2/Barbara+Camboim+Lopes+de+Figueiredo.pdfd463c6ab534a96f1ce5aac33c2dde210MD52tede2/45262016-08-04 08:54:07.547oai:tede2:tede2/4526Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:31:53.246694Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Análise multifractal da velocidade do vento em Pernambuco |
title |
Análise multifractal da velocidade do vento em Pernambuco |
spellingShingle |
Análise multifractal da velocidade do vento em Pernambuco FIGUEIRÊDO, Bárbara Camboim Lopes de Velocidade do vento Variáveis climáticas Correlações de longo alcance Multifractalidade Wind speed Climatic variables Long range correlation Multifractal Detrended Fluctuation Analysis Multifractality CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
title_short |
Análise multifractal da velocidade do vento em Pernambuco |
title_full |
Análise multifractal da velocidade do vento em Pernambuco |
title_fullStr |
Análise multifractal da velocidade do vento em Pernambuco |
title_full_unstemmed |
Análise multifractal da velocidade do vento em Pernambuco |
title_sort |
Análise multifractal da velocidade do vento em Pernambuco |
author |
FIGUEIRÊDO, Bárbara Camboim Lopes de |
author_facet |
FIGUEIRÊDO, Bárbara Camboim Lopes de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
STOSIC, Tatijana |
dc.contributor.advisor-co1.fl_str_mv |
STOSIC, Borko |
dc.contributor.referee1.fl_str_mv |
CUNHA FILHO, Moacyr |
dc.contributor.referee2.fl_str_mv |
FIGUEIRÊDO, Pedro Hugo de |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7093624677195884 |
dc.contributor.author.fl_str_mv |
FIGUEIRÊDO, Bárbara Camboim Lopes de |
contributor_str_mv |
STOSIC, Tatijana STOSIC, Borko CUNHA FILHO, Moacyr FIGUEIRÊDO, Pedro Hugo de |
dc.subject.por.fl_str_mv |
Velocidade do vento Variáveis climáticas Correlações de longo alcance Multifractalidade |
topic |
Velocidade do vento Variáveis climáticas Correlações de longo alcance Multifractalidade Wind speed Climatic variables Long range correlation Multifractal Detrended Fluctuation Analysis Multifractality CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
dc.subject.eng.fl_str_mv |
Wind speed Climatic variables Long range correlation Multifractal Detrended Fluctuation Analysis Multifractality |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
description |
The study of climate has great importance, given that a variation of climatic elements affect the economy of a certain region and life of the inhabitants. Climate variables temperature, humidity, atmospheric pressure, solar radiation, precipitation and wind can be affected by geophysical and environmental factors such as latitude, altitude, air mass, proximity to sea, sea currents and vegetation. Wind is the most complex climate element representing the natural phenomenon of turbulence, it is characterized by high temporal and spatial variability. Wind is generated by atmospheric air mass movement, and has influence on various environmental phenomena such as soil erosion, pollutant dispersal and transport of pollen and seeds. Knowing wind speed temporal and spatial distribution is crucial to evaluate the potential for generation of eolic energy. In this work we study long-term correlations in wind speed temporal series registered at twelve meteorological stations in the state of Pernambuco, Brazil. To this end we apply Multifractal Detrended Fluctuation Analysis (MF-DFA) on hourly wind speed data for the period 2008-2011. All the analyzed series exhibit multifractal properties with generalized Hurst exponents above 0.5 indicating persistent temporal dynamics for both, small and large fluctuations. We also calculate other multifractal measures Rényi exponent and singularity spectrum, and complexity parameters, position of maximum, width and asymmetry of multifractral spectrum. No correlation was detected between complexity parameters and the geographic parameters longitude, latitude and altitude of the station, except for asymmetry of multifractal spectrum: negative correlation with longitude for maximum wind speed and negative correlation with latitude for average wind speed. However for all stations the strength of multifractality (indicated by width of multifractal spectrum) is greater for maximum wind speed then for average wind speed. These results contribute to a better understanding of the nature of stochastic processes governing wind dynamics which is necessary for development of more accurate predictive models for wind speed temporal variability and diverse phenomena influenced by wind. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-02-24 |
dc.date.accessioned.fl_str_mv |
2016-05-25T14:39:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FIGUEIRÊDO, Bárbara Camboim Lopes de. Análise multifractal da velocidade do vento em Pernambuco. 2014. 76 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4526 |
identifier_str_mv |
FIGUEIRÊDO, Bárbara Camboim Lopes de. Análise multifractal da velocidade do vento em Pernambuco. 2014. 76 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4526 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
768382242446187918 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-6774555140396120501 |
dc.relation.cnpq.fl_str_mv |
-5836407828185143517 |
dc.relation.sponsorship.fl_str_mv |
3590462550136975366 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Biometria e Estatística Aplicada |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Estatística e Informática |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4526/1/license.txt http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/4526/2/Barbara+Camboim+Lopes+de+Figueiredo.pdf |
bitstream.checksum.fl_str_mv |
7b5ba3d2445355f386edab96125d42b7 d463c6ab534a96f1ce5aac33c2dde210 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102215991361536 |