Aplicação de análises estatística e neural para reconhecimento de sinais de odores

Detalhes bibliográficos
Autor(a) principal: D'EMERY, Richarlyson Alves
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5255
Resumo: This work investigates the use of an electronic nose prototype for prognosis of Diabetes Mellitus. The work involves five main parts: (1) building of odors database by aroma sensors; (2) an evaluation of the odors database through multivariate statistics techniques;(3) use of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) Artificial Neural Networks (ANN) in the odors recognition; (4) an evaluation of statistics and connectionist approaches; and (5) a case study. The multivariate statistical method used was the Principal Components Analysis (PCA) as characteristic extraction, beyond of an evaluation of performance for Hypothesis Test. Also had been used the K-Nearest-Neighbour (KNN) classifier for classification of odors signs. The connectionist approach involves the MLP e RBF ANN trained with de odors database. For the ANN’s inputs were used the Normalization as pre-processing of data and PCA for characteristic extraction and reduction of data dimensionality. The signals generated by the four sensors of an electronic nose prototype exposed to the urine from the diabetics and non-diabetics patients and the characteristics signals of the sensors without the presence of volatiles substances were analyzed. The use of characteristic extraction by PCA improved the performance of the classifiers used. In the experiments, theKNN classified correctly all the data set from the database divided in training and test after PCA. The better MLP ANN obtained a classification of 77% to the norma lized data without PCA use and of 100% after PCA while the RBF ANN obtained a classification of 66% to the normalized data and the 100% after PCA in the odors classification.
id URPE_a9e2ce616d7c94059e04e6e7e6d35d1f
oai_identifier_str oai:tede2:tede2/5255
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling OLIVEIRA JUNIOR, Wilson Rosa deSTOSIC, TatijanaSANTOS, Laélia Pumilla Botêlho Campos dosSANTOS, Francisco Luizhttp://lattes.cnpq.br/3553920177544450D'EMERY, Richarlyson Alves2016-08-10T13:45:58Z2007-02-28D'EMERY, Richarlyson Alves. Aplicação de análises estatística e neural para reconhecimento de sinais de odores. 2007. 192 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5255This work investigates the use of an electronic nose prototype for prognosis of Diabetes Mellitus. The work involves five main parts: (1) building of odors database by aroma sensors; (2) an evaluation of the odors database through multivariate statistics techniques;(3) use of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) Artificial Neural Networks (ANN) in the odors recognition; (4) an evaluation of statistics and connectionist approaches; and (5) a case study. The multivariate statistical method used was the Principal Components Analysis (PCA) as characteristic extraction, beyond of an evaluation of performance for Hypothesis Test. Also had been used the K-Nearest-Neighbour (KNN) classifier for classification of odors signs. The connectionist approach involves the MLP e RBF ANN trained with de odors database. For the ANN’s inputs were used the Normalization as pre-processing of data and PCA for characteristic extraction and reduction of data dimensionality. The signals generated by the four sensors of an electronic nose prototype exposed to the urine from the diabetics and non-diabetics patients and the characteristics signals of the sensors without the presence of volatiles substances were analyzed. The use of characteristic extraction by PCA improved the performance of the classifiers used. In the experiments, theKNN classified correctly all the data set from the database divided in training and test after PCA. The better MLP ANN obtained a classification of 77% to the norma lized data without PCA use and of 100% after PCA while the RBF ANN obtained a classification of 66% to the normalized data and the 100% after PCA in the odors classification.Esta dissertação investiga a utilização de um protótipo de nariz artificial no prognóstico da Diabetes Mellitus. O trabalho envolve cinco partes principais: (1) construção de uma base de dados de odores a partir de sensores de aroma; (2) avaliação da base de dados construída a partir de uma técnica estatística multivariada; (3) utilização das Redes Neurais Artificiais (RNs) Multilayer Perceptron (MLP) e de Função de Base Radial (RBF) no reconhecimento de odores; (4) avaliação das abordagens estatísticas e conexionistas e (5) o estudo de caso. A técnica estatística multivariada utilizada foi a Análise de Componentes Principais (PCA) como extração de característica, além da avaliação de desempenho por Teste de Hipótese.Também foi utilizado o classificador K-Nearest-Neighbour (KNN) para classificação dos sinais de odores. A abordagem conexionista envolve as RNs MLP e RBF treinadas a partir da base de dados de odor construída. Para as entradas das RNs foram utilizadas a Normalização como pré-processamento de dados e PCA para extração de características e redução da dimensionalidade dos dados. Foram analisados os sinais gerados por quatro sensores de um protótipo de nariz artificial exposto à urina de pacientes diabéticos e não-diabéticos, além dos sinais característicos dos sensores sem a presença de substâncias voláteis. A utilização da extração de característica por PCA melhorou consideravelmente o desempenho dos classificadores utilizados. Nos experimentos realizados, o classificado KNN classificou corretamente todo o conjunto de dados pertencente à base de dados divida em treinamento e teste após a extração de características. As melhores RNs MLP obtiveram uma classificação de 77% para os dados Normalizados sem a utilização de PCA e de 100% após PCA. Já as melhores RNs RBF obtiveram uma classificação de 66% para os dados Normalizados e de 100% após PCA na classificação dos odores.Submitted by (ana.araujo@ufrpe.br) on 2016-08-10T13:45:58Z No. of bitstreams: 1 Richarlyson Alves D'Emery.pdf: 1523906 bytes, checksum: 81231068cc8b3e83964d8897f3385cdb (MD5)Made available in DSpace on 2016-08-10T13:45:58Z (GMT). No. of bitstreams: 1 Richarlyson Alves D'Emery.pdf: 1523906 bytes, checksum: 81231068cc8b3e83964d8897f3385cdb (MD5) Previous issue date: 2007-02-28Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Biometria e Estatística AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaDiabetesReconhecimento de padrãoSensor de aromaNariz artificialPattern recognitionAroma sensorsElectronic noseCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAAplicação de análises estatística e neural para reconhecimento de sinais de odoresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis768382242446187918600600600600-6774555140396120501-58364078281851435172075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5255/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALRicharlyson Alves D'Emery.pdfRicharlyson Alves D'Emery.pdfapplication/pdf1523906http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5255/2/Richarlyson+Alves+D%27Emery.pdf81231068cc8b3e83964d8897f3385cdbMD52tede2/52552019-07-11 10:44:33.686oai:tede2:tede2/5255Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:32:48.533767Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Aplicação de análises estatística e neural para reconhecimento de sinais de odores
title Aplicação de análises estatística e neural para reconhecimento de sinais de odores
spellingShingle Aplicação de análises estatística e neural para reconhecimento de sinais de odores
D'EMERY, Richarlyson Alves
Diabetes
Reconhecimento de padrão
Sensor de aroma
Nariz artificial
Pattern recognition
Aroma sensors
Electronic nose
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Aplicação de análises estatística e neural para reconhecimento de sinais de odores
title_full Aplicação de análises estatística e neural para reconhecimento de sinais de odores
title_fullStr Aplicação de análises estatística e neural para reconhecimento de sinais de odores
title_full_unstemmed Aplicação de análises estatística e neural para reconhecimento de sinais de odores
title_sort Aplicação de análises estatística e neural para reconhecimento de sinais de odores
author D'EMERY, Richarlyson Alves
author_facet D'EMERY, Richarlyson Alves
author_role author
dc.contributor.advisor1.fl_str_mv OLIVEIRA JUNIOR, Wilson Rosa de
dc.contributor.referee1.fl_str_mv STOSIC, Tatijana
dc.contributor.referee2.fl_str_mv SANTOS, Laélia Pumilla Botêlho Campos dos
dc.contributor.referee3.fl_str_mv SANTOS, Francisco Luiz
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3553920177544450
dc.contributor.author.fl_str_mv D'EMERY, Richarlyson Alves
contributor_str_mv OLIVEIRA JUNIOR, Wilson Rosa de
STOSIC, Tatijana
SANTOS, Laélia Pumilla Botêlho Campos dos
SANTOS, Francisco Luiz
dc.subject.por.fl_str_mv Diabetes
Reconhecimento de padrão
Sensor de aroma
Nariz artificial
topic Diabetes
Reconhecimento de padrão
Sensor de aroma
Nariz artificial
Pattern recognition
Aroma sensors
Electronic nose
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.eng.fl_str_mv Pattern recognition
Aroma sensors
Electronic nose
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description This work investigates the use of an electronic nose prototype for prognosis of Diabetes Mellitus. The work involves five main parts: (1) building of odors database by aroma sensors; (2) an evaluation of the odors database through multivariate statistics techniques;(3) use of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) Artificial Neural Networks (ANN) in the odors recognition; (4) an evaluation of statistics and connectionist approaches; and (5) a case study. The multivariate statistical method used was the Principal Components Analysis (PCA) as characteristic extraction, beyond of an evaluation of performance for Hypothesis Test. Also had been used the K-Nearest-Neighbour (KNN) classifier for classification of odors signs. The connectionist approach involves the MLP e RBF ANN trained with de odors database. For the ANN’s inputs were used the Normalization as pre-processing of data and PCA for characteristic extraction and reduction of data dimensionality. The signals generated by the four sensors of an electronic nose prototype exposed to the urine from the diabetics and non-diabetics patients and the characteristics signals of the sensors without the presence of volatiles substances were analyzed. The use of characteristic extraction by PCA improved the performance of the classifiers used. In the experiments, theKNN classified correctly all the data set from the database divided in training and test after PCA. The better MLP ANN obtained a classification of 77% to the norma lized data without PCA use and of 100% after PCA while the RBF ANN obtained a classification of 66% to the normalized data and the 100% after PCA in the odors classification.
publishDate 2007
dc.date.issued.fl_str_mv 2007-02-28
dc.date.accessioned.fl_str_mv 2016-08-10T13:45:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv D'EMERY, Richarlyson Alves. Aplicação de análises estatística e neural para reconhecimento de sinais de odores. 2007. 192 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5255
identifier_str_mv D'EMERY, Richarlyson Alves. Aplicação de análises estatística e neural para reconhecimento de sinais de odores. 2007. 192 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5255
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 768382242446187918
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -6774555140396120501
dc.relation.cnpq.fl_str_mv -5836407828185143517
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Biometria e Estatística Aplicada
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Estatística e Informática
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5255/1/license.txt
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5255/2/Richarlyson+Alves+D%27Emery.pdf
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
81231068cc8b3e83964d8897f3385cdb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102223836807168