Aplicação de análises estatística e neural para reconhecimento de sinais de odores
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5255 |
Resumo: | This work investigates the use of an electronic nose prototype for prognosis of Diabetes Mellitus. The work involves five main parts: (1) building of odors database by aroma sensors; (2) an evaluation of the odors database through multivariate statistics techniques;(3) use of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) Artificial Neural Networks (ANN) in the odors recognition; (4) an evaluation of statistics and connectionist approaches; and (5) a case study. The multivariate statistical method used was the Principal Components Analysis (PCA) as characteristic extraction, beyond of an evaluation of performance for Hypothesis Test. Also had been used the K-Nearest-Neighbour (KNN) classifier for classification of odors signs. The connectionist approach involves the MLP e RBF ANN trained with de odors database. For the ANN’s inputs were used the Normalization as pre-processing of data and PCA for characteristic extraction and reduction of data dimensionality. The signals generated by the four sensors of an electronic nose prototype exposed to the urine from the diabetics and non-diabetics patients and the characteristics signals of the sensors without the presence of volatiles substances were analyzed. The use of characteristic extraction by PCA improved the performance of the classifiers used. In the experiments, theKNN classified correctly all the data set from the database divided in training and test after PCA. The better MLP ANN obtained a classification of 77% to the norma lized data without PCA use and of 100% after PCA while the RBF ANN obtained a classification of 66% to the normalized data and the 100% after PCA in the odors classification. |
id |
URPE_a9e2ce616d7c94059e04e6e7e6d35d1f |
---|---|
oai_identifier_str |
oai:tede2:tede2/5255 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
OLIVEIRA JUNIOR, Wilson Rosa deSTOSIC, TatijanaSANTOS, Laélia Pumilla Botêlho Campos dosSANTOS, Francisco Luizhttp://lattes.cnpq.br/3553920177544450D'EMERY, Richarlyson Alves2016-08-10T13:45:58Z2007-02-28D'EMERY, Richarlyson Alves. Aplicação de análises estatística e neural para reconhecimento de sinais de odores. 2007. 192 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5255This work investigates the use of an electronic nose prototype for prognosis of Diabetes Mellitus. The work involves five main parts: (1) building of odors database by aroma sensors; (2) an evaluation of the odors database through multivariate statistics techniques;(3) use of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) Artificial Neural Networks (ANN) in the odors recognition; (4) an evaluation of statistics and connectionist approaches; and (5) a case study. The multivariate statistical method used was the Principal Components Analysis (PCA) as characteristic extraction, beyond of an evaluation of performance for Hypothesis Test. Also had been used the K-Nearest-Neighbour (KNN) classifier for classification of odors signs. The connectionist approach involves the MLP e RBF ANN trained with de odors database. For the ANN’s inputs were used the Normalization as pre-processing of data and PCA for characteristic extraction and reduction of data dimensionality. The signals generated by the four sensors of an electronic nose prototype exposed to the urine from the diabetics and non-diabetics patients and the characteristics signals of the sensors without the presence of volatiles substances were analyzed. The use of characteristic extraction by PCA improved the performance of the classifiers used. In the experiments, theKNN classified correctly all the data set from the database divided in training and test after PCA. The better MLP ANN obtained a classification of 77% to the norma lized data without PCA use and of 100% after PCA while the RBF ANN obtained a classification of 66% to the normalized data and the 100% after PCA in the odors classification.Esta dissertação investiga a utilização de um protótipo de nariz artificial no prognóstico da Diabetes Mellitus. O trabalho envolve cinco partes principais: (1) construção de uma base de dados de odores a partir de sensores de aroma; (2) avaliação da base de dados construída a partir de uma técnica estatística multivariada; (3) utilização das Redes Neurais Artificiais (RNs) Multilayer Perceptron (MLP) e de Função de Base Radial (RBF) no reconhecimento de odores; (4) avaliação das abordagens estatísticas e conexionistas e (5) o estudo de caso. A técnica estatística multivariada utilizada foi a Análise de Componentes Principais (PCA) como extração de característica, além da avaliação de desempenho por Teste de Hipótese.Também foi utilizado o classificador K-Nearest-Neighbour (KNN) para classificação dos sinais de odores. A abordagem conexionista envolve as RNs MLP e RBF treinadas a partir da base de dados de odor construída. Para as entradas das RNs foram utilizadas a Normalização como pré-processamento de dados e PCA para extração de características e redução da dimensionalidade dos dados. Foram analisados os sinais gerados por quatro sensores de um protótipo de nariz artificial exposto à urina de pacientes diabéticos e não-diabéticos, além dos sinais característicos dos sensores sem a presença de substâncias voláteis. A utilização da extração de característica por PCA melhorou consideravelmente o desempenho dos classificadores utilizados. Nos experimentos realizados, o classificado KNN classificou corretamente todo o conjunto de dados pertencente à base de dados divida em treinamento e teste após a extração de características. As melhores RNs MLP obtiveram uma classificação de 77% para os dados Normalizados sem a utilização de PCA e de 100% após PCA. Já as melhores RNs RBF obtiveram uma classificação de 66% para os dados Normalizados e de 100% após PCA na classificação dos odores.Submitted by (ana.araujo@ufrpe.br) on 2016-08-10T13:45:58Z No. of bitstreams: 1 Richarlyson Alves D'Emery.pdf: 1523906 bytes, checksum: 81231068cc8b3e83964d8897f3385cdb (MD5)Made available in DSpace on 2016-08-10T13:45:58Z (GMT). No. of bitstreams: 1 Richarlyson Alves D'Emery.pdf: 1523906 bytes, checksum: 81231068cc8b3e83964d8897f3385cdb (MD5) Previous issue date: 2007-02-28Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Biometria e Estatística AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaDiabetesReconhecimento de padrãoSensor de aromaNariz artificialPattern recognitionAroma sensorsElectronic noseCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAAplicação de análises estatística e neural para reconhecimento de sinais de odoresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis768382242446187918600600600600-6774555140396120501-58364078281851435172075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPELICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5255/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALRicharlyson Alves D'Emery.pdfRicharlyson Alves D'Emery.pdfapplication/pdf1523906http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5255/2/Richarlyson+Alves+D%27Emery.pdf81231068cc8b3e83964d8897f3385cdbMD52tede2/52552019-07-11 10:44:33.686oai:tede2:tede2/5255Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:32:48.533767Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Aplicação de análises estatística e neural para reconhecimento de sinais de odores |
title |
Aplicação de análises estatística e neural para reconhecimento de sinais de odores |
spellingShingle |
Aplicação de análises estatística e neural para reconhecimento de sinais de odores D'EMERY, Richarlyson Alves Diabetes Reconhecimento de padrão Sensor de aroma Nariz artificial Pattern recognition Aroma sensors Electronic nose CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
title_short |
Aplicação de análises estatística e neural para reconhecimento de sinais de odores |
title_full |
Aplicação de análises estatística e neural para reconhecimento de sinais de odores |
title_fullStr |
Aplicação de análises estatística e neural para reconhecimento de sinais de odores |
title_full_unstemmed |
Aplicação de análises estatística e neural para reconhecimento de sinais de odores |
title_sort |
Aplicação de análises estatística e neural para reconhecimento de sinais de odores |
author |
D'EMERY, Richarlyson Alves |
author_facet |
D'EMERY, Richarlyson Alves |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
OLIVEIRA JUNIOR, Wilson Rosa de |
dc.contributor.referee1.fl_str_mv |
STOSIC, Tatijana |
dc.contributor.referee2.fl_str_mv |
SANTOS, Laélia Pumilla Botêlho Campos dos |
dc.contributor.referee3.fl_str_mv |
SANTOS, Francisco Luiz |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3553920177544450 |
dc.contributor.author.fl_str_mv |
D'EMERY, Richarlyson Alves |
contributor_str_mv |
OLIVEIRA JUNIOR, Wilson Rosa de STOSIC, Tatijana SANTOS, Laélia Pumilla Botêlho Campos dos SANTOS, Francisco Luiz |
dc.subject.por.fl_str_mv |
Diabetes Reconhecimento de padrão Sensor de aroma Nariz artificial |
topic |
Diabetes Reconhecimento de padrão Sensor de aroma Nariz artificial Pattern recognition Aroma sensors Electronic nose CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
dc.subject.eng.fl_str_mv |
Pattern recognition Aroma sensors Electronic nose |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
description |
This work investigates the use of an electronic nose prototype for prognosis of Diabetes Mellitus. The work involves five main parts: (1) building of odors database by aroma sensors; (2) an evaluation of the odors database through multivariate statistics techniques;(3) use of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) Artificial Neural Networks (ANN) in the odors recognition; (4) an evaluation of statistics and connectionist approaches; and (5) a case study. The multivariate statistical method used was the Principal Components Analysis (PCA) as characteristic extraction, beyond of an evaluation of performance for Hypothesis Test. Also had been used the K-Nearest-Neighbour (KNN) classifier for classification of odors signs. The connectionist approach involves the MLP e RBF ANN trained with de odors database. For the ANN’s inputs were used the Normalization as pre-processing of data and PCA for characteristic extraction and reduction of data dimensionality. The signals generated by the four sensors of an electronic nose prototype exposed to the urine from the diabetics and non-diabetics patients and the characteristics signals of the sensors without the presence of volatiles substances were analyzed. The use of characteristic extraction by PCA improved the performance of the classifiers used. In the experiments, theKNN classified correctly all the data set from the database divided in training and test after PCA. The better MLP ANN obtained a classification of 77% to the norma lized data without PCA use and of 100% after PCA while the RBF ANN obtained a classification of 66% to the normalized data and the 100% after PCA in the odors classification. |
publishDate |
2007 |
dc.date.issued.fl_str_mv |
2007-02-28 |
dc.date.accessioned.fl_str_mv |
2016-08-10T13:45:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
D'EMERY, Richarlyson Alves. Aplicação de análises estatística e neural para reconhecimento de sinais de odores. 2007. 192 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5255 |
identifier_str_mv |
D'EMERY, Richarlyson Alves. Aplicação de análises estatística e neural para reconhecimento de sinais de odores. 2007. 192 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5255 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
768382242446187918 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-6774555140396120501 |
dc.relation.cnpq.fl_str_mv |
-5836407828185143517 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Biometria e Estatística Aplicada |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Estatística e Informática |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5255/1/license.txt http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/5255/2/Richarlyson+Alves+D%27Emery.pdf |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 81231068cc8b3e83964d8897f3385cdb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102223836807168 |