Seleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7827 |
Resumo: | Eggplant is an oleraceous from Solanaceae family, which its ideal temperature for development is between 22 and 32ºC. Values above 33ºC cause a drastic decrease in productivity due to the effects of high temperature. Because of this, the aim of this work is to select lineages and F1 hybrids of high-temperature tolerant eggplants. To pursue these goals three experiments were conduct between the years of 2016 and 2017 at the Universidade Federal Rural de Pernambuco, Recife, PE. The first experiment was conduct in a greenhouse between May and September of 2016. It was evaluated ten morphological aspects recommended by the International Board for Plant Genetic Resources (IBPGR) acquired from 24 genotypes arranged in four random blocks. Data were submitted to variance analysis (p<0.01) and cluster analysis by Tocher’s method and UPGMA, having the generalized Mahalanobis distance as a measure of dissimilarity. The second experiment was conducted between December of 2016 and May of 2017. Eight characters were analyzed in 22 genotypes arranged in the randomized block design with four replicates, conducted in a greenhouse and in field. Data were submitted to an analysis of joint variance and the means of genotypes and environment grouped by Scott-Knott test (p<0.01). The genetic, phenotypic and environmental correlations were also estimated. In the last experiment, seven lineages were studied, 12 F1 hybrids were attained from a partial diallel and the Ciça F1 hybrid as witness. The experiment was design in a randomized complete block with four replicates, performed between the months of August and December of 2017. Data were submitted to variance analysis and the mean grouped by the Scott-Knott test (p<0.01). To obtain the estimates of general combining ability (GCA) and specific combining ability (SCA), the means of genitors and F1 hybrids were submitted to diallelic analysis. Estimates of heterosis related to the mean of genitors were attained for each F1 hybrid. According with data acquired in the first experiment the fruit length (FL), fruit width (FW), and fruit length/width ratio (FLWR) explained 90,72% of the total genetic dissimilarity. Multivariate techniques were partially agreeing with each other and allowed visualization of the genetic variability between the 24 genotypes studied for all the characters in lesser or greater extent. The results of the second experiment indicated that the correlations were positive for the pairs: Number of Fruits per Plant (NFP) x Index of fixation of fruits (IFF), NFP x Production per Plant (PP) and PP x IFF. The correlation was negative for the pair NFP x PP. Between the characters pollen viability (PV), IFF, NFP and PP the associations were low or negative on both environment. Greater means for PV, NFP and PP were observed in the growth at the greenhouse, while in the field the genotypes achieved better performance for IFF, Fruit Weight (FWe), FL, FW, FLWR. In high temperature conditions, genotypes CNPH 135, CNPH 93, CNPH 79, CNPH 410, CNPH 84, CNPH 71, CNPH 668, Ajimurasaki F1 and Kokushi Onaga F1 excelled with a good IFF and the CNPH 135 with the best IFF, PP, PV and FWe. In 45.45% of genotypes values for IFF were low, around 21.32% to 40.51%. In the field, genotypes CNPH 84 and CNPH 668 had the best IFF (>60%). Finally, in the third experiment, the results of diallelic analysis showed a prevalence of GCA over SCA in most of characters, except PV. According to the GCA estimates, the genitor CNPH 135 was the one that presented the best results. The effect of SCA was important in the control of most characters, except FL and FW. Such results show the importance of additive and non-additive gene effects and point out a larger participation of additive gene action in controlling most of the characters of interest for a selection of high-temperature tolerant genotypes. The F1 hybrids were superior to the average of genitors, with positive heterosis for characters PV, IFF, NFP and PP; for the rest of characters it was observed positive and negative heterosis in some hybrid combinations, showing the possibility of exploration of heterosis for different shapes and sizes of fruits. |
id |
URPE_b799f3a9673ed287fd298e3a3db45572 |
---|---|
oai_identifier_str |
oai:tede2:tede2/7827 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
MENEZES, DimasMELO, Roberto de AlbuquerqueOLIVEIRA, Francisco José dePEREIRA, Jacqueline Wanessa de LimaCARVALHO FILHO, José Luiz Sandes deMESQUITA, Júlio Carlos Polimeni deVALADARES, Ricardo de Normandes2019-02-12T13:12:47Z2018-03-08VALADARES, Ricardo de Normandes. Seleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridos. 2018. 93 f. Tese (Programa de Pós-Graduação em Melhoramento Genético de Plantas) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7827Eggplant is an oleraceous from Solanaceae family, which its ideal temperature for development is between 22 and 32ºC. Values above 33ºC cause a drastic decrease in productivity due to the effects of high temperature. Because of this, the aim of this work is to select lineages and F1 hybrids of high-temperature tolerant eggplants. To pursue these goals three experiments were conduct between the years of 2016 and 2017 at the Universidade Federal Rural de Pernambuco, Recife, PE. The first experiment was conduct in a greenhouse between May and September of 2016. It was evaluated ten morphological aspects recommended by the International Board for Plant Genetic Resources (IBPGR) acquired from 24 genotypes arranged in four random blocks. Data were submitted to variance analysis (p<0.01) and cluster analysis by Tocher’s method and UPGMA, having the generalized Mahalanobis distance as a measure of dissimilarity. The second experiment was conducted between December of 2016 and May of 2017. Eight characters were analyzed in 22 genotypes arranged in the randomized block design with four replicates, conducted in a greenhouse and in field. Data were submitted to an analysis of joint variance and the means of genotypes and environment grouped by Scott-Knott test (p<0.01). The genetic, phenotypic and environmental correlations were also estimated. In the last experiment, seven lineages were studied, 12 F1 hybrids were attained from a partial diallel and the Ciça F1 hybrid as witness. The experiment was design in a randomized complete block with four replicates, performed between the months of August and December of 2017. Data were submitted to variance analysis and the mean grouped by the Scott-Knott test (p<0.01). To obtain the estimates of general combining ability (GCA) and specific combining ability (SCA), the means of genitors and F1 hybrids were submitted to diallelic analysis. Estimates of heterosis related to the mean of genitors were attained for each F1 hybrid. According with data acquired in the first experiment the fruit length (FL), fruit width (FW), and fruit length/width ratio (FLWR) explained 90,72% of the total genetic dissimilarity. Multivariate techniques were partially agreeing with each other and allowed visualization of the genetic variability between the 24 genotypes studied for all the characters in lesser or greater extent. The results of the second experiment indicated that the correlations were positive for the pairs: Number of Fruits per Plant (NFP) x Index of fixation of fruits (IFF), NFP x Production per Plant (PP) and PP x IFF. The correlation was negative for the pair NFP x PP. Between the characters pollen viability (PV), IFF, NFP and PP the associations were low or negative on both environment. Greater means for PV, NFP and PP were observed in the growth at the greenhouse, while in the field the genotypes achieved better performance for IFF, Fruit Weight (FWe), FL, FW, FLWR. In high temperature conditions, genotypes CNPH 135, CNPH 93, CNPH 79, CNPH 410, CNPH 84, CNPH 71, CNPH 668, Ajimurasaki F1 and Kokushi Onaga F1 excelled with a good IFF and the CNPH 135 with the best IFF, PP, PV and FWe. In 45.45% of genotypes values for IFF were low, around 21.32% to 40.51%. In the field, genotypes CNPH 84 and CNPH 668 had the best IFF (>60%). Finally, in the third experiment, the results of diallelic analysis showed a prevalence of GCA over SCA in most of characters, except PV. According to the GCA estimates, the genitor CNPH 135 was the one that presented the best results. The effect of SCA was important in the control of most characters, except FL and FW. Such results show the importance of additive and non-additive gene effects and point out a larger participation of additive gene action in controlling most of the characters of interest for a selection of high-temperature tolerant genotypes. The F1 hybrids were superior to the average of genitors, with positive heterosis for characters PV, IFF, NFP and PP; for the rest of characters it was observed positive and negative heterosis in some hybrid combinations, showing the possibility of exploration of heterosis for different shapes and sizes of fruits.A berinjela é uma olerícola da família solanácea, cuja faixa ideal de temperatura para seu desenvolvimento encontra-se entre 22 e 32ºC. Valores acima de 33ºC causam a redução drástica na produtividade decorrente dos efeitos causados pelas altas temperaturas. Em virtude disso, objetivou-se selecionar linhagens e híbridos F1’s de berinjela tolerantes a altas temperaturas. Para perseguir estes objetivos foram conduzidos três experimentos entre os anos de 2016 e 2017 na Universidade Federal Rural de Pernambuco, Recife, PE. O primeiro experimento foi conduzido em casa de vegetação entre os meses de maio e setembro de 2016. Foram avaliados dez descritores morfológicos recomendados pelo International Board for Plant Genetic Resources (IBPGR) obtidos de 24 genótipos dispostos em quatro blocos ao acaso. Os dados foram submetidos à análise de variância (p<0,01) e de agrupamento, pelos métodos de Tocher e UPGMA tendo a distância generalizada de Mahalanobis como medida de dissimilaridade. O segundo experimento foi conduzido entre os meses de dezembro/2016 e maio/2017. Oito caracteres foram analisados em 22 genótipos dispostos no delineamento de blocos casualizados com quatro repetições, conduzidos em casa de vegetação e no campo. Os dados foram submetidos à análise de variância conjunta e as médias dos genótipos e ambientes agrupadas pelo teste de Scott-Knott (p<0,01). Foram estimadas ainda as correlações genéticas, fenotípicas e ambientais para ambos os ambientes. No último experimento, foram avaliadas sete linhagens, 12 híbridos F1’s obtidos de um dialelo parcial e o híbrido Ciça F1 como testemunha. O experimento foi delineado em blocos completos ao acaso com quatro repetições, realizado entre os meses de agosto e dezembro de 2017. Os dados foram submetidos à análise de variância e as médias agrupadas pelo teste de Scott-Knott (p<0,01). Para obtenção das estimativas de capacidades geral de combinação (CGC) e capacidade específica de combinação (CEC), as médias dos genitores e dos híbridos F1’s foram submetidas à análise dialélica. As estimativas da heterose relativa à média dos genitores foram obtidas para cada híbrido F1. De acordo com os dados obtidos no primeiro experimento, o comprimento do fruto (CF), largura do fruto (LF) e a relação comprimento/largura do fruto (RCLF), explicaram 90,72% da dissimilaridade genética total. As técnicas multivariadas foram parcialmente concordantes entre si e permitiram a visualização da variabilidade genética entre os 24 genótipos estudados para todos os caracteres em menor e maior proporção. Os resultados do segundo experimento indicaram que as correlações foram positivas para os pares: Número de frutos por planta (NFP) x Índice de pegamento de fruto (IPF), NFP x Produção por planta (PP) e PP x IPF e negativa no par NFP x PP. Entre os caracteres viabilidade polínica (VP), IPF, NFP e PP as associações foram baixas e/ou negativas, em ambos os ambientes. Maiores médias para VP, NFP, PP foram observados no cultivo em casa de vegetação, enquanto que no campo os genótipos tiverem melhores desempenhos para IPF, peso do fruto (PF), CF, LF e RCLF. Em condições de altas temperaturas se destacaram os genótipos CNPH 135, CNPH 93, CNPH 79, CNPH 410, CNPH 84, CNPH 71, CNPH 668, Ajimurasaki F1 e Kokushi Onaga F1 com bom IPF e o CNPH 135 com os maiores IPF, PP, VP e PF. Em 45,45% dos genótipos os valores para IPF foram baixos, em torno de 21,32 a 40,51%. No campo os genótipos CNPH 84 e CNPH 668 tiveram o melhor IPF (>60%). Por fim, no terceiro experimento, os resultados da análise dialélica evidenciaram maior importância da CGC em relação à CEC na maior parte dos caracteres, exceto VP. Conforme a estimativa da CGC, o genitor CNPH 135 foi o que apresentou os melhores resultados. O efeito da CEC foi importante no controle da maioria dos caracteres, exceto para CF e LF. Tais resultados evidenciam a importância dos efeitos gênicos aditivos e não-aditivos e indica a maior participação da ação gênica aditiva no controle da maioria dos caracteres de interesse para a seleção de genótipos tolerantes a altas temperaturas. Os híbridos F1’s foram superiores às médias dos genitores, com heterose positiva, para os caracteres VP, IPF, NFP e PP. Enquanto que, para os demais caracteres foram observadas tanto heterose positiva quanto negativa em algumas combinações híbridas, mostrando a possibilidade de exploração da heterose para diferentes formatos e tamanhos de frutos.Submitted by Mario BC (mario@bc.ufrpe.br) on 2019-02-12T13:12:47Z No. of bitstreams: 1 Ricardo de Normandes Valadares.pdf: 1372649 bytes, checksum: a4ccaae5ead1015f763b91f6c2920509 (MD5)Made available in DSpace on 2019-02-12T13:12:47Z (GMT). No. of bitstreams: 1 Ricardo de Normandes Valadares.pdf: 1372649 bytes, checksum: a4ccaae5ead1015f763b91f6c2920509 (MD5) Previous issue date: 2018-03-08Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Melhoramento Genético de PlantasUFRPEBrasilDepartamento de AgronomiaBerinjelaSolanum melongenaHeteroseVariabilidade genéticaFITOTECNIA::MELHORAMENTO VEGETALSeleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-6234655866848882505600600600600-680055387997222920526156072994701319672075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALRicardo de Normandes Valadares.pdfRicardo de Normandes Valadares.pdfapplication/pdf1372649http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7827/2/Ricardo+de+Normandes+Valadares.pdfa4ccaae5ead1015f763b91f6c2920509MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7827/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/78272019-02-12 10:12:47.618oai:tede2:tede2/7827Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:36:10.399643Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Seleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridos |
title |
Seleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridos |
spellingShingle |
Seleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridos VALADARES, Ricardo de Normandes Berinjela Solanum melongena Heterose Variabilidade genética FITOTECNIA::MELHORAMENTO VEGETAL |
title_short |
Seleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridos |
title_full |
Seleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridos |
title_fullStr |
Seleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridos |
title_full_unstemmed |
Seleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridos |
title_sort |
Seleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridos |
author |
VALADARES, Ricardo de Normandes |
author_facet |
VALADARES, Ricardo de Normandes |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
MENEZES, Dimas |
dc.contributor.advisor-co1.fl_str_mv |
MELO, Roberto de Albuquerque |
dc.contributor.referee1.fl_str_mv |
OLIVEIRA, Francisco José de |
dc.contributor.referee2.fl_str_mv |
PEREIRA, Jacqueline Wanessa de Lima |
dc.contributor.referee3.fl_str_mv |
CARVALHO FILHO, José Luiz Sandes de |
dc.contributor.referee4.fl_str_mv |
MESQUITA, Júlio Carlos Polimeni de |
dc.contributor.author.fl_str_mv |
VALADARES, Ricardo de Normandes |
contributor_str_mv |
MENEZES, Dimas MELO, Roberto de Albuquerque OLIVEIRA, Francisco José de PEREIRA, Jacqueline Wanessa de Lima CARVALHO FILHO, José Luiz Sandes de MESQUITA, Júlio Carlos Polimeni de |
dc.subject.por.fl_str_mv |
Berinjela Solanum melongena Heterose Variabilidade genética |
topic |
Berinjela Solanum melongena Heterose Variabilidade genética FITOTECNIA::MELHORAMENTO VEGETAL |
dc.subject.cnpq.fl_str_mv |
FITOTECNIA::MELHORAMENTO VEGETAL |
description |
Eggplant is an oleraceous from Solanaceae family, which its ideal temperature for development is between 22 and 32ºC. Values above 33ºC cause a drastic decrease in productivity due to the effects of high temperature. Because of this, the aim of this work is to select lineages and F1 hybrids of high-temperature tolerant eggplants. To pursue these goals three experiments were conduct between the years of 2016 and 2017 at the Universidade Federal Rural de Pernambuco, Recife, PE. The first experiment was conduct in a greenhouse between May and September of 2016. It was evaluated ten morphological aspects recommended by the International Board for Plant Genetic Resources (IBPGR) acquired from 24 genotypes arranged in four random blocks. Data were submitted to variance analysis (p<0.01) and cluster analysis by Tocher’s method and UPGMA, having the generalized Mahalanobis distance as a measure of dissimilarity. The second experiment was conducted between December of 2016 and May of 2017. Eight characters were analyzed in 22 genotypes arranged in the randomized block design with four replicates, conducted in a greenhouse and in field. Data were submitted to an analysis of joint variance and the means of genotypes and environment grouped by Scott-Knott test (p<0.01). The genetic, phenotypic and environmental correlations were also estimated. In the last experiment, seven lineages were studied, 12 F1 hybrids were attained from a partial diallel and the Ciça F1 hybrid as witness. The experiment was design in a randomized complete block with four replicates, performed between the months of August and December of 2017. Data were submitted to variance analysis and the mean grouped by the Scott-Knott test (p<0.01). To obtain the estimates of general combining ability (GCA) and specific combining ability (SCA), the means of genitors and F1 hybrids were submitted to diallelic analysis. Estimates of heterosis related to the mean of genitors were attained for each F1 hybrid. According with data acquired in the first experiment the fruit length (FL), fruit width (FW), and fruit length/width ratio (FLWR) explained 90,72% of the total genetic dissimilarity. Multivariate techniques were partially agreeing with each other and allowed visualization of the genetic variability between the 24 genotypes studied for all the characters in lesser or greater extent. The results of the second experiment indicated that the correlations were positive for the pairs: Number of Fruits per Plant (NFP) x Index of fixation of fruits (IFF), NFP x Production per Plant (PP) and PP x IFF. The correlation was negative for the pair NFP x PP. Between the characters pollen viability (PV), IFF, NFP and PP the associations were low or negative on both environment. Greater means for PV, NFP and PP were observed in the growth at the greenhouse, while in the field the genotypes achieved better performance for IFF, Fruit Weight (FWe), FL, FW, FLWR. In high temperature conditions, genotypes CNPH 135, CNPH 93, CNPH 79, CNPH 410, CNPH 84, CNPH 71, CNPH 668, Ajimurasaki F1 and Kokushi Onaga F1 excelled with a good IFF and the CNPH 135 with the best IFF, PP, PV and FWe. In 45.45% of genotypes values for IFF were low, around 21.32% to 40.51%. In the field, genotypes CNPH 84 and CNPH 668 had the best IFF (>60%). Finally, in the third experiment, the results of diallelic analysis showed a prevalence of GCA over SCA in most of characters, except PV. According to the GCA estimates, the genitor CNPH 135 was the one that presented the best results. The effect of SCA was important in the control of most characters, except FL and FW. Such results show the importance of additive and non-additive gene effects and point out a larger participation of additive gene action in controlling most of the characters of interest for a selection of high-temperature tolerant genotypes. The F1 hybrids were superior to the average of genitors, with positive heterosis for characters PV, IFF, NFP and PP; for the rest of characters it was observed positive and negative heterosis in some hybrid combinations, showing the possibility of exploration of heterosis for different shapes and sizes of fruits. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-03-08 |
dc.date.accessioned.fl_str_mv |
2019-02-12T13:12:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
VALADARES, Ricardo de Normandes. Seleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridos. 2018. 93 f. Tese (Programa de Pós-Graduação em Melhoramento Genético de Plantas) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7827 |
identifier_str_mv |
VALADARES, Ricardo de Normandes. Seleção de linhagens de berinjela tolerantes a alta temperatura e heterose em seus híbridos. 2018. 93 f. Tese (Programa de Pós-Graduação em Melhoramento Genético de Plantas) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7827 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-6234655866848882505 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-6800553879972229205 |
dc.relation.cnpq.fl_str_mv |
2615607299470131967 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Melhoramento Genético de Plantas |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Agronomia |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7827/2/Ricardo+de+Normandes+Valadares.pdf http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7827/1/license.txt |
bitstream.checksum.fl_str_mv |
a4ccaae5ead1015f763b91f6c2920509 bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102255622291456 |