Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba

Detalhes bibliográficos
Autor(a) principal: GUERA, Ouorou Ganni Mariel
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7386
Resumo: The objective of this study was to propose models that aid decision making in productive process of Pinus caribaea var. caribaea Barr. & Golf. through the application of multivariate techniques, regression analysis, multicriteria decision analysis techniques (MCDA) and Artificial Neural Networks (ANNs) in different stages of said process. The three stages of the forest production process (PPF) involved in the present study were: (1) growth, yield and forest survival stage; (2) wood extraction and transport stage, and (3) wood primary transformation stage. Pinus caribaea var. caribaea growth, yield and survival modeling required data from temporary and permanent circular plots of 500 m² of the Macurije Integral Forest Company, in which the following variables were measured: : Diameter at Breast Height - DBH (cm), total height - H (m) and survival - (num. of trees/ha). At this stage, the specie productive capacity classification was carried, Artificial Neural Networks (ANNs) were trained and regression models were adjusted for growth prediction and yield and survival prognosis. At wood extraction and transport stage, the performance of different wood extraction systems and means was evaluated through univariate and multivariate factorial experiments, being cost and productivity the dependent variables obtained by time and movement studies. At the same stage, a Lexicographic Goals Programming model was proposed to assist decision making in harvesting and forest transport planning. At the stage of wood primary transformation in Combate de Tenerías sawmill, regression models were adjusted and ANNs were trained, both for lumber recovery factor prediction and lumber classification. Lumber quality being a discrete ordinal variable, ordinal logistic regression was used for its modeling. The database required for lumber recovery factor modeling was composed by the variables Diameter at Breast Height (DBH), Smallest log diameter (D) and conicity (Con.) obtained from real-time monitoring of wood sawing at the sawmill Combate de Tenerías. The 24 variables predicting lumber quality were measured in pieces obtained at the end the end of sawing process in the same sawmill. The results obtained during the research indicated that multivariate, multicriteria and Artificial Neural Networks techniques are efficient in assisting decision-making in FPP stages considered. ANNs models presented similar or superior performances to the traditional regression models both in prediction (volumetric growth, lumber recovery factor) or prognosis (survival, growth and yield) and in lumber grading. From the results, it was concluded that it is not prudent to assume absolute superiority of ANNs and that opting for the complementarity of both approaches rather than the exclusive use of ANNs, as most comparative research tends to suggest, is far more prudent. Multivariate evaluation of wood extraction machineries performances and the Lexicographic Goal Programming model proposed for timber extraction and transport planning provided a multicriteria support translated into solutions with greater practicality and functionality.
id URPE_bc08e563e4466b16e126e778d3b0888b
oai_identifier_str oai:tede2:tede2/7386
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling SILVA, José Antônio Aleixo daFERREIRA, Rinaldo Luiz CaracioloLAZO, Daniel Alberto ÁlvarezVALENÇA, Mêuser Jorge SilvaGADELHA, Fernando Henrique de LimaMEUNIER, Isabelle Maria JacquelineBRAZ, Rafael Leitehttp://lattes.cnpq.br/3542238768449928GUERA, Ouorou Ganni Mariel2018-08-07T14:26:37Z2017-07-06GUERA, Ouorou Ganni Mariel. Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba. 2017. 262 f. Tese (Programa de Pós-Graduação em Ciências Florestais) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7386The objective of this study was to propose models that aid decision making in productive process of Pinus caribaea var. caribaea Barr. & Golf. through the application of multivariate techniques, regression analysis, multicriteria decision analysis techniques (MCDA) and Artificial Neural Networks (ANNs) in different stages of said process. The three stages of the forest production process (PPF) involved in the present study were: (1) growth, yield and forest survival stage; (2) wood extraction and transport stage, and (3) wood primary transformation stage. Pinus caribaea var. caribaea growth, yield and survival modeling required data from temporary and permanent circular plots of 500 m² of the Macurije Integral Forest Company, in which the following variables were measured: : Diameter at Breast Height - DBH (cm), total height - H (m) and survival - (num. of trees/ha). At this stage, the specie productive capacity classification was carried, Artificial Neural Networks (ANNs) were trained and regression models were adjusted for growth prediction and yield and survival prognosis. At wood extraction and transport stage, the performance of different wood extraction systems and means was evaluated through univariate and multivariate factorial experiments, being cost and productivity the dependent variables obtained by time and movement studies. At the same stage, a Lexicographic Goals Programming model was proposed to assist decision making in harvesting and forest transport planning. At the stage of wood primary transformation in Combate de Tenerías sawmill, regression models were adjusted and ANNs were trained, both for lumber recovery factor prediction and lumber classification. Lumber quality being a discrete ordinal variable, ordinal logistic regression was used for its modeling. The database required for lumber recovery factor modeling was composed by the variables Diameter at Breast Height (DBH), Smallest log diameter (D) and conicity (Con.) obtained from real-time monitoring of wood sawing at the sawmill Combate de Tenerías. The 24 variables predicting lumber quality were measured in pieces obtained at the end the end of sawing process in the same sawmill. The results obtained during the research indicated that multivariate, multicriteria and Artificial Neural Networks techniques are efficient in assisting decision-making in FPP stages considered. ANNs models presented similar or superior performances to the traditional regression models both in prediction (volumetric growth, lumber recovery factor) or prognosis (survival, growth and yield) and in lumber grading. From the results, it was concluded that it is not prudent to assume absolute superiority of ANNs and that opting for the complementarity of both approaches rather than the exclusive use of ANNs, as most comparative research tends to suggest, is far more prudent. Multivariate evaluation of wood extraction machineries performances and the Lexicographic Goal Programming model proposed for timber extraction and transport planning provided a multicriteria support translated into solutions with greater practicality and functionality.Objetivou-se no presente estudo, propor modelos que auxiliem na tomada de decisões no processo produtivo de Pinus caribaea var. caribaea Barr. & Golf. por meio da aplicação de técnicas multivariadas, análise de regressão, técnicas de análise de decisão multicritério (MCDA) e Redes Neurais Artificiais (RNAs) em diferentes etapas do referido processo. As três etapas do processo produtivo florestal (PPF) envolvidas no presente estudo foram: (1) a fase de crescimento, produção e sobrevivência florestal; (2) a fase de extração e transporte florestal e (3) a fase de transformação primária da madeira. A modelagem de crescimento, produção e sobrevivência da espécie requereu de dados provenientes de parcelas temporárias e permanentes circulares de 500 m² de plantios de Pinus caribaea var. caribaea da Empresa Florestal Integral Macurije, nas quais foram medidas as variáveis: Diâmetro à Altura de Peito DAP (cm), altura total – H (m) e sobrevivência - (árv./ha). Nessa etapa, foi realizada a classificação da capacidade produtiva da espécie, foram treinadas Redes Neurais Artificiais (RNAs) e foram ajustados modelos de regressão para a predição e prognose de sobrevivência e crescimento e produção florestal. Na etapa de extração e transporte florestal, avaliou-se o desempenho de diferentes meios e sistemas de extração de madeira por meio de experimentos fatoriais univariados e multivariados sendo custo e produtividade as variáveis dependentes obtidas por estudos de tempo e movimento. Na mesma etapa, se propôs um modelo de programação por metas lexicográficas para auxiliar a tomada de decisão na extração e transporte florestal. Na etapa de transformação primária da madeira na serraria Combate de Tenerías, foram ajustados modelos de regressão e foram treinadas RNAs, tanto para a predição do rendimento em madeira serrada como para a classificação da mesma. A qualidade de madeira serrada sendo uma variável discreta ordinal, a regressão logística ordinal foi utilizada para sua modelagem. A base de dados requerida para a modelagem do rendimento em madeira serrada foi composta pelas variáveis Diâmetro a Altura do Peito (DAP), Diâmetro menor da tora (D) e conicidade (Con.) obtidas do acompanhamento em tempo real do desdobro da madeira na serraria Combate de Tenerías. As 24 variáveis preditoras da qualidade de madeira serrada foram mensuradas em peças obtidas ao final do processo de desdobro na mesma serraria. Os resultados obtidos ao longo da pesquisa indicaram que as técnicas multivariadas, multicritérios e as Redes Neurais Artificiais são eficientes no auxílio à tomada de decisão nas etapas do PPF consideradas. Os modelos de RNAs apresentaram desempenhos similares ou superiores aos modelos tradicionais de regressão tanto na predição (crescimento volumétrico; rendimento em madeira serrada) ou prognose (sobrevivência; crescimento e produção florestal) como na classificação da madeira serrada. Através dos resultados obtidos ao longo da pesquisa, concluiu-se que não é prudente assumir a superioridade absoluta das RNAs e que optar pela complementaridade de ambas as abordagens em vez do uso exclusivo das RNAs, como a maioria das pesquisas comparativas tendem a sugerir, é bem mais argucioso. A avaliação multivariada dos desempenhos dos meios de extração de madeira e o modelo de programação por metas lexicográfica proposto para o planejamento de extração e transporte de madeira proporcionaram um apoio multicritério traduzido em soluções com maior praticidade e funcionalidade.Submitted by Mario BC (mario@bc.ufrpe.br) on 2018-08-07T14:26:37Z No. of bitstreams: 1 Ouorou Ganni Mariel Guera.pdf: 5661294 bytes, checksum: 7f5784536c7d7d0ac07cfad5a29df312 (MD5)Made available in DSpace on 2018-08-07T14:26:37Z (GMT). No. of bitstreams: 1 Ouorou Ganni Mariel Guera.pdf: 5661294 bytes, checksum: 7f5784536c7d7d0ac07cfad5a29df312 (MD5) Previous issue date: 2017-07-06Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Ciências FlorestaisUFRPEBrasilDepartamento de Ciência FlorestalModelo matemáticoPinus caribaeaProdução madeireiraManejo florestalCIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTALModelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, CubaMathematical models to aid decision making in the productive process of Pinus caribaea Morelet var. caribaea Barr. & Golf. at Macurije Integral Forest Company, Pinar del Río, Cubainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis67087623920308873596006006006008320097514872741102-6040493895528792832075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALOuorou Ganni Mariel Guera.pdfOuorou Ganni Mariel Guera.pdfapplication/pdf5661294http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7386/2/Ouorou+Ganni+Mariel+Guera.pdf7f5784536c7d7d0ac07cfad5a29df312MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7386/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/73862018-08-07 11:26:37.644oai:tede2:tede2/7386Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:35:36.108130Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba
dc.title.alternative.eng.fl_str_mv Mathematical models to aid decision making in the productive process of Pinus caribaea Morelet var. caribaea Barr. & Golf. at Macurije Integral Forest Company, Pinar del Río, Cuba
title Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba
spellingShingle Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba
GUERA, Ouorou Ganni Mariel
Modelo matemático
Pinus caribaea
Produção madeireira
Manejo florestal
CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
title_short Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba
title_full Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba
title_fullStr Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba
title_full_unstemmed Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba
title_sort Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba
author GUERA, Ouorou Ganni Mariel
author_facet GUERA, Ouorou Ganni Mariel
author_role author
dc.contributor.advisor1.fl_str_mv SILVA, José Antônio Aleixo da
dc.contributor.advisor-co1.fl_str_mv FERREIRA, Rinaldo Luiz Caraciolo
dc.contributor.advisor-co2.fl_str_mv LAZO, Daniel Alberto Álvarez
dc.contributor.referee1.fl_str_mv VALENÇA, Mêuser Jorge Silva
dc.contributor.referee2.fl_str_mv GADELHA, Fernando Henrique de Lima
dc.contributor.referee3.fl_str_mv MEUNIER, Isabelle Maria Jacqueline
dc.contributor.referee4.fl_str_mv BRAZ, Rafael Leite
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3542238768449928
dc.contributor.author.fl_str_mv GUERA, Ouorou Ganni Mariel
contributor_str_mv SILVA, José Antônio Aleixo da
FERREIRA, Rinaldo Luiz Caraciolo
LAZO, Daniel Alberto Álvarez
VALENÇA, Mêuser Jorge Silva
GADELHA, Fernando Henrique de Lima
MEUNIER, Isabelle Maria Jacqueline
BRAZ, Rafael Leite
dc.subject.por.fl_str_mv Modelo matemático
Pinus caribaea
Produção madeireira
Manejo florestal
topic Modelo matemático
Pinus caribaea
Produção madeireira
Manejo florestal
CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
description The objective of this study was to propose models that aid decision making in productive process of Pinus caribaea var. caribaea Barr. & Golf. through the application of multivariate techniques, regression analysis, multicriteria decision analysis techniques (MCDA) and Artificial Neural Networks (ANNs) in different stages of said process. The three stages of the forest production process (PPF) involved in the present study were: (1) growth, yield and forest survival stage; (2) wood extraction and transport stage, and (3) wood primary transformation stage. Pinus caribaea var. caribaea growth, yield and survival modeling required data from temporary and permanent circular plots of 500 m² of the Macurije Integral Forest Company, in which the following variables were measured: : Diameter at Breast Height - DBH (cm), total height - H (m) and survival - (num. of trees/ha). At this stage, the specie productive capacity classification was carried, Artificial Neural Networks (ANNs) were trained and regression models were adjusted for growth prediction and yield and survival prognosis. At wood extraction and transport stage, the performance of different wood extraction systems and means was evaluated through univariate and multivariate factorial experiments, being cost and productivity the dependent variables obtained by time and movement studies. At the same stage, a Lexicographic Goals Programming model was proposed to assist decision making in harvesting and forest transport planning. At the stage of wood primary transformation in Combate de Tenerías sawmill, regression models were adjusted and ANNs were trained, both for lumber recovery factor prediction and lumber classification. Lumber quality being a discrete ordinal variable, ordinal logistic regression was used for its modeling. The database required for lumber recovery factor modeling was composed by the variables Diameter at Breast Height (DBH), Smallest log diameter (D) and conicity (Con.) obtained from real-time monitoring of wood sawing at the sawmill Combate de Tenerías. The 24 variables predicting lumber quality were measured in pieces obtained at the end the end of sawing process in the same sawmill. The results obtained during the research indicated that multivariate, multicriteria and Artificial Neural Networks techniques are efficient in assisting decision-making in FPP stages considered. ANNs models presented similar or superior performances to the traditional regression models both in prediction (volumetric growth, lumber recovery factor) or prognosis (survival, growth and yield) and in lumber grading. From the results, it was concluded that it is not prudent to assume absolute superiority of ANNs and that opting for the complementarity of both approaches rather than the exclusive use of ANNs, as most comparative research tends to suggest, is far more prudent. Multivariate evaluation of wood extraction machineries performances and the Lexicographic Goal Programming model proposed for timber extraction and transport planning provided a multicriteria support translated into solutions with greater practicality and functionality.
publishDate 2017
dc.date.issued.fl_str_mv 2017-07-06
dc.date.accessioned.fl_str_mv 2018-08-07T14:26:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GUERA, Ouorou Ganni Mariel. Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba. 2017. 262 f. Tese (Programa de Pós-Graduação em Ciências Florestais) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7386
identifier_str_mv GUERA, Ouorou Ganni Mariel. Modelos matemáticos para auxílio à tomada de decisão no processo produtivo de Pinus caribaea Morelet var. caribaea Barr. & Golf. na Empresa Florestal Integral Macurije, Pinar del Río, Cuba. 2017. 262 f. Tese (Programa de Pós-Graduação em Ciências Florestais) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7386
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6708762392030887359
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv 8320097514872741102
dc.relation.cnpq.fl_str_mv -604049389552879283
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Florestais
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Ciência Florestal
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7386/2/Ouorou+Ganni+Mariel+Guera.pdf
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7386/1/license.txt
bitstream.checksum.fl_str_mv 7f5784536c7d7d0ac07cfad5a29df312
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102249941106688