Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff

Detalhes bibliográficos
Autor(a) principal: LIMA, Marcella Luanna da Silva
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9305
Resumo: This doctoral research aimed to establish articulations between van Hiele's levels of geometric thinking and Balacheff's types of proof, based on the discussions brought by Jaime and Gutiérrez and Balacheff, and the argumentations/justifications produced by undergraduates in Mathematics. The research carried out is characterized as quali-quantitative, with aspects of a case study. The data collection procedures were: questionnaire, activities with mathematical proofs, field notes, participant observation, video recordings and semi-structured interviews, carried out after the application of the activities. Eleven undergraduates in mathematics from a public university in the state of Paraíba participated in the research, who were between the 6th and 10th period of the course. As a theoretical framework, we used the approach of mathematical proofs and demonstrations under the perspective of Balacheff and considered the approach of the levels of geometric thinking under the discussions of van Hiele, De Villiers, Nasser, Kaleff et al., Dall'Alba, Ontario, Vargas and Araya, Jaime and Gutiérrez, among others. The analysis of the results showed that: (1) the undergraduates did not know how to differentiate the words proof and demonstration, they did not have experience with the proofs and demonstrations in Basic Education and the work with them in the Mathematics Degree was not satisfactory, because they still have a lot of difficulty in writing and understanding them, and do not identify with the area; (2) the undergraduate students, in their majority, presented arguments/justifications within the pragmatic proofs, without an adequate mathematical basis, only validating the statements through experimentation. Only one pair was able to construct mental experience proofs in six out of seven activities, validating their strategies generically; (3) the undergraduate students fluctuated a lot from one level of thinking to another, mainly in activities that involved the same concepts. Because of this, they built different types of proof; (4) the majority of undergraduates understand the difference between particular cases and generic cases in mathematics when analyzing their arguments, justifications and proof of mathematical statements. We check out experimentally that the undergraduates who were at level 4 of van Hiele, managed to elaborate proofs of the mental experience type and those who were at level 3, elaborated proofs of the generic example type. The undergraduates who were at level 2, on the other hand, managed to elaborate two types of pragmatic proofs: naive empiricism and crucial experience, while those who were at level 1, did not take proofs, as they did not feel the need to justify their ideas. Therefore, we can say that the research contributes to Mathematics Education by establishing more specific articulations between van Hiele's levels of geometric thinking and the types of proof proposed by Balacheff, which have not yet been discussed in the literature. In addition, we believe that the results can lead to a reflection on the possibility of differentiating the words proof and demonstration, the teaching of Mathematics in order to develop the mathematical reasoning of students and the teaching of demonstrations in the Mathematics Degree, enabling them to do mathematics.
id URPE_ecbbf2e8b058b224654d4dbd246125d7
oai_identifier_str oai:tede2:tede2/9305
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling SANTOS, Marcelo Câmara dosLIMA, Anna Paula de Avelar BritoALMEIDA, Jadilson Ramos deLINS, Abigail FregniALMOULOUD, Saddo AgLIMA, Marcella Luanna da Silva2023-08-11T12:12:24Z2020-03-04LIMA, Marcella Luanna da Silva. Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff. 2020. 400 f. Tese (Programa de Pós-Graduação em Ensino das Ciências) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9305This doctoral research aimed to establish articulations between van Hiele's levels of geometric thinking and Balacheff's types of proof, based on the discussions brought by Jaime and Gutiérrez and Balacheff, and the argumentations/justifications produced by undergraduates in Mathematics. The research carried out is characterized as quali-quantitative, with aspects of a case study. The data collection procedures were: questionnaire, activities with mathematical proofs, field notes, participant observation, video recordings and semi-structured interviews, carried out after the application of the activities. Eleven undergraduates in mathematics from a public university in the state of Paraíba participated in the research, who were between the 6th and 10th period of the course. As a theoretical framework, we used the approach of mathematical proofs and demonstrations under the perspective of Balacheff and considered the approach of the levels of geometric thinking under the discussions of van Hiele, De Villiers, Nasser, Kaleff et al., Dall'Alba, Ontario, Vargas and Araya, Jaime and Gutiérrez, among others. The analysis of the results showed that: (1) the undergraduates did not know how to differentiate the words proof and demonstration, they did not have experience with the proofs and demonstrations in Basic Education and the work with them in the Mathematics Degree was not satisfactory, because they still have a lot of difficulty in writing and understanding them, and do not identify with the area; (2) the undergraduate students, in their majority, presented arguments/justifications within the pragmatic proofs, without an adequate mathematical basis, only validating the statements through experimentation. Only one pair was able to construct mental experience proofs in six out of seven activities, validating their strategies generically; (3) the undergraduate students fluctuated a lot from one level of thinking to another, mainly in activities that involved the same concepts. Because of this, they built different types of proof; (4) the majority of undergraduates understand the difference between particular cases and generic cases in mathematics when analyzing their arguments, justifications and proof of mathematical statements. We check out experimentally that the undergraduates who were at level 4 of van Hiele, managed to elaborate proofs of the mental experience type and those who were at level 3, elaborated proofs of the generic example type. The undergraduates who were at level 2, on the other hand, managed to elaborate two types of pragmatic proofs: naive empiricism and crucial experience, while those who were at level 1, did not take proofs, as they did not feel the need to justify their ideas. Therefore, we can say that the research contributes to Mathematics Education by establishing more specific articulations between van Hiele's levels of geometric thinking and the types of proof proposed by Balacheff, which have not yet been discussed in the literature. In addition, we believe that the results can lead to a reflection on the possibility of differentiating the words proof and demonstration, the teaching of Mathematics in order to develop the mathematical reasoning of students and the teaching of demonstrations in the Mathematics Degree, enabling them to do mathematics.Esta pesquisa de doutorado teve por objetivo estabelecer articulações entre os níveis de pensamento geométrico de van Hiele e os tipos de prova de Balacheff, a partir das discussões trazidas por Jaime e Gutiérrez e Balacheff, e das argumentações/justificações produzidas por licenciandos em Matemática. A pesquisa realizada caracteriza-se como quali-quantitativa, com aspectos de um estudo de caso. Os procedimentos de coleta de dados foram: questionário, atividades com provas matemáticas, notas de campo, observação participante, videogravações e entrevistas semiestruturadas, realizadas após a aplicação das atividades. Participaram da pesquisa onze licenciandos em Matemática de uma universidade pública do estado da Paraíba, que se encontravam entre o 6º e 10º período do curso. Como referencial teórico, utilizamos a abordagem das provas e demonstrações matemáticas sob o olhar de Balacheff e consideramos a abordagem dos níveis de pensamento geométrico sob as discussões de van Hiele, De Villiers, Nasser, Kaleff et al., Dall’Alba, Ontário, Vargas e Araya, Jaime e Gutiérrez, entre outros. A análise dos resultados mostrou que: (1) os licenciandos não sabiam diferenciar as palavras prova e demonstração, não tiveram uma vivência com as provas e demonstrações na Educação Básica e o trabalho com elas na Licenciatura não foi satisfatório, pois eles ainda têm muita dificuldade em escrevê-las e entende-las, e não se identificam com a área; (2) os licenciandos, em sua maioria, apresentaram argumentações/justificações dentro das provas pragmáticas, sem um embasamento matemático adequado, apenas validando as afirmações por meio da experimentação. Somente uma dupla conseguiu em seis de sete atividades construir provas do tipo experiência mental, validando as suas estratégias genericamente; (3) os licenciandos oscilaram muito de um nível de pensamento para outro, principalmente nas atividades que envolviam os mesmos conceitos. Devido a isso, eles construíram diferentes tipos de prova; (4) os licenciandos, em sua maioria, compreendem a diferença entre casos particulares e casos genéricos na Matemática ao analisarem as suas argumentações, justificativas e provas de afirmações matemáticas. Averiguamos experimentalmente que os licenciandos que se encontravam no nível 4 de van Hiele, conseguiram elaborar provas do tipo experiência mental e os que se encontravam no nível 3, elaboraram provas do tipo exemplo genérico. Já os licenciandos que se encontravam no nível 2, conseguiram elaborar dois tipos de provas pragmáticas: empirismo ingênuo e experiência crucial, enquanto àqueles que se encontravam no nível 1, não realizaram provas, pois não sentiram a necessidade de justificar as suas ideias. Portanto, podemos dizer que a pesquisa traz uma contribuição para a Educação Matemática ao estabelecer articulações mais específicas entre os níveis de pensamento geométrico de van Hiele e os tipos de prova propostos por Balacheff, as quais ainda não foram discutidas na literatura. Além disso, acreditamos que os resultados podem levar a uma reflexão sobre a possibilidade de diferenciação das palavras prova e demonstração, o ensino da Matemática com o intuito de desenvolver o raciocínio matemático dos alunos e o ensino das demonstrações na Licenciatura em Matemática possibilitando o fazer matemática.Submitted by Mario BC (mario@bc.ufrpe.br) on 2023-08-11T12:12:24Z No. of bitstreams: 1 Marcella Luanna da Silva Lima.pdf: 6887625 bytes, checksum: 8f2a3be5535bf06baa5b78a3bd10ced1 (MD5)Made available in DSpace on 2023-08-11T12:12:24Z (GMT). No. of bitstreams: 1 Marcella Luanna da Silva Lima.pdf: 6887625 bytes, checksum: 8f2a3be5535bf06baa5b78a3bd10ced1 (MD5) Previous issue date: 2020-03-04application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Ensino das CiênciasUFRPEBrasilDepartamento de EducaçãoLicenciatura em matemáticaGeometriaEducação matemáticaPensamento geométricoCIENCIAS HUMANAS::EDUCACAOUm estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheffinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-6099596823942813476006006007124334461228751377-240345818910352367info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALMarcella Luanna da Silva Lima.pdfMarcella Luanna da Silva Lima.pdfapplication/pdf6887625http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9305/2/Marcella+Luanna+da+Silva+Lima.pdf8f2a3be5535bf06baa5b78a3bd10ced1MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9305/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/93052023-08-11 09:12:24.191oai:tede2:tede2/9305Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:38:06.242222Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff
title Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff
spellingShingle Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff
LIMA, Marcella Luanna da Silva
Licenciatura em matemática
Geometria
Educação matemática
Pensamento geométrico
CIENCIAS HUMANAS::EDUCACAO
title_short Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff
title_full Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff
title_fullStr Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff
title_full_unstemmed Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff
title_sort Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff
author LIMA, Marcella Luanna da Silva
author_facet LIMA, Marcella Luanna da Silva
author_role author
dc.contributor.advisor1.fl_str_mv SANTOS, Marcelo Câmara dos
dc.contributor.referee1.fl_str_mv LIMA, Anna Paula de Avelar Brito
dc.contributor.referee2.fl_str_mv ALMEIDA, Jadilson Ramos de
dc.contributor.referee3.fl_str_mv LINS, Abigail Fregni
dc.contributor.referee4.fl_str_mv ALMOULOUD, Saddo Ag
dc.contributor.author.fl_str_mv LIMA, Marcella Luanna da Silva
contributor_str_mv SANTOS, Marcelo Câmara dos
LIMA, Anna Paula de Avelar Brito
ALMEIDA, Jadilson Ramos de
LINS, Abigail Fregni
ALMOULOUD, Saddo Ag
dc.subject.por.fl_str_mv Licenciatura em matemática
Geometria
Educação matemática
Pensamento geométrico
topic Licenciatura em matemática
Geometria
Educação matemática
Pensamento geométrico
CIENCIAS HUMANAS::EDUCACAO
dc.subject.cnpq.fl_str_mv CIENCIAS HUMANAS::EDUCACAO
description This doctoral research aimed to establish articulations between van Hiele's levels of geometric thinking and Balacheff's types of proof, based on the discussions brought by Jaime and Gutiérrez and Balacheff, and the argumentations/justifications produced by undergraduates in Mathematics. The research carried out is characterized as quali-quantitative, with aspects of a case study. The data collection procedures were: questionnaire, activities with mathematical proofs, field notes, participant observation, video recordings and semi-structured interviews, carried out after the application of the activities. Eleven undergraduates in mathematics from a public university in the state of Paraíba participated in the research, who were between the 6th and 10th period of the course. As a theoretical framework, we used the approach of mathematical proofs and demonstrations under the perspective of Balacheff and considered the approach of the levels of geometric thinking under the discussions of van Hiele, De Villiers, Nasser, Kaleff et al., Dall'Alba, Ontario, Vargas and Araya, Jaime and Gutiérrez, among others. The analysis of the results showed that: (1) the undergraduates did not know how to differentiate the words proof and demonstration, they did not have experience with the proofs and demonstrations in Basic Education and the work with them in the Mathematics Degree was not satisfactory, because they still have a lot of difficulty in writing and understanding them, and do not identify with the area; (2) the undergraduate students, in their majority, presented arguments/justifications within the pragmatic proofs, without an adequate mathematical basis, only validating the statements through experimentation. Only one pair was able to construct mental experience proofs in six out of seven activities, validating their strategies generically; (3) the undergraduate students fluctuated a lot from one level of thinking to another, mainly in activities that involved the same concepts. Because of this, they built different types of proof; (4) the majority of undergraduates understand the difference between particular cases and generic cases in mathematics when analyzing their arguments, justifications and proof of mathematical statements. We check out experimentally that the undergraduates who were at level 4 of van Hiele, managed to elaborate proofs of the mental experience type and those who were at level 3, elaborated proofs of the generic example type. The undergraduates who were at level 2, on the other hand, managed to elaborate two types of pragmatic proofs: naive empiricism and crucial experience, while those who were at level 1, did not take proofs, as they did not feel the need to justify their ideas. Therefore, we can say that the research contributes to Mathematics Education by establishing more specific articulations between van Hiele's levels of geometric thinking and the types of proof proposed by Balacheff, which have not yet been discussed in the literature. In addition, we believe that the results can lead to a reflection on the possibility of differentiating the words proof and demonstration, the teaching of Mathematics in order to develop the mathematical reasoning of students and the teaching of demonstrations in the Mathematics Degree, enabling them to do mathematics.
publishDate 2020
dc.date.issued.fl_str_mv 2020-03-04
dc.date.accessioned.fl_str_mv 2023-08-11T12:12:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA, Marcella Luanna da Silva. Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff. 2020. 400 f. Tese (Programa de Pós-Graduação em Ensino das Ciências) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9305
identifier_str_mv LIMA, Marcella Luanna da Silva. Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff. 2020. 400 f. Tese (Programa de Pós-Graduação em Ensino das Ciências) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9305
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -609959682394281347
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 7124334461228751377
dc.relation.cnpq.fl_str_mv -240345818910352367
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ensino das Ciências
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Educação
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9305/2/Marcella+Luanna+da+Silva+Lima.pdf
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9305/1/license.txt
bitstream.checksum.fl_str_mv 8f2a3be5535bf06baa5b78a3bd10ced1
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102274386558976