Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9305 |
Resumo: | This doctoral research aimed to establish articulations between van Hiele's levels of geometric thinking and Balacheff's types of proof, based on the discussions brought by Jaime and Gutiérrez and Balacheff, and the argumentations/justifications produced by undergraduates in Mathematics. The research carried out is characterized as quali-quantitative, with aspects of a case study. The data collection procedures were: questionnaire, activities with mathematical proofs, field notes, participant observation, video recordings and semi-structured interviews, carried out after the application of the activities. Eleven undergraduates in mathematics from a public university in the state of Paraíba participated in the research, who were between the 6th and 10th period of the course. As a theoretical framework, we used the approach of mathematical proofs and demonstrations under the perspective of Balacheff and considered the approach of the levels of geometric thinking under the discussions of van Hiele, De Villiers, Nasser, Kaleff et al., Dall'Alba, Ontario, Vargas and Araya, Jaime and Gutiérrez, among others. The analysis of the results showed that: (1) the undergraduates did not know how to differentiate the words proof and demonstration, they did not have experience with the proofs and demonstrations in Basic Education and the work with them in the Mathematics Degree was not satisfactory, because they still have a lot of difficulty in writing and understanding them, and do not identify with the area; (2) the undergraduate students, in their majority, presented arguments/justifications within the pragmatic proofs, without an adequate mathematical basis, only validating the statements through experimentation. Only one pair was able to construct mental experience proofs in six out of seven activities, validating their strategies generically; (3) the undergraduate students fluctuated a lot from one level of thinking to another, mainly in activities that involved the same concepts. Because of this, they built different types of proof; (4) the majority of undergraduates understand the difference between particular cases and generic cases in mathematics when analyzing their arguments, justifications and proof of mathematical statements. We check out experimentally that the undergraduates who were at level 4 of van Hiele, managed to elaborate proofs of the mental experience type and those who were at level 3, elaborated proofs of the generic example type. The undergraduates who were at level 2, on the other hand, managed to elaborate two types of pragmatic proofs: naive empiricism and crucial experience, while those who were at level 1, did not take proofs, as they did not feel the need to justify their ideas. Therefore, we can say that the research contributes to Mathematics Education by establishing more specific articulations between van Hiele's levels of geometric thinking and the types of proof proposed by Balacheff, which have not yet been discussed in the literature. In addition, we believe that the results can lead to a reflection on the possibility of differentiating the words proof and demonstration, the teaching of Mathematics in order to develop the mathematical reasoning of students and the teaching of demonstrations in the Mathematics Degree, enabling them to do mathematics. |
id |
URPE_ecbbf2e8b058b224654d4dbd246125d7 |
---|---|
oai_identifier_str |
oai:tede2:tede2/9305 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
SANTOS, Marcelo Câmara dosLIMA, Anna Paula de Avelar BritoALMEIDA, Jadilson Ramos deLINS, Abigail FregniALMOULOUD, Saddo AgLIMA, Marcella Luanna da Silva2023-08-11T12:12:24Z2020-03-04LIMA, Marcella Luanna da Silva. Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff. 2020. 400 f. Tese (Programa de Pós-Graduação em Ensino das Ciências) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9305This doctoral research aimed to establish articulations between van Hiele's levels of geometric thinking and Balacheff's types of proof, based on the discussions brought by Jaime and Gutiérrez and Balacheff, and the argumentations/justifications produced by undergraduates in Mathematics. The research carried out is characterized as quali-quantitative, with aspects of a case study. The data collection procedures were: questionnaire, activities with mathematical proofs, field notes, participant observation, video recordings and semi-structured interviews, carried out after the application of the activities. Eleven undergraduates in mathematics from a public university in the state of Paraíba participated in the research, who were between the 6th and 10th period of the course. As a theoretical framework, we used the approach of mathematical proofs and demonstrations under the perspective of Balacheff and considered the approach of the levels of geometric thinking under the discussions of van Hiele, De Villiers, Nasser, Kaleff et al., Dall'Alba, Ontario, Vargas and Araya, Jaime and Gutiérrez, among others. The analysis of the results showed that: (1) the undergraduates did not know how to differentiate the words proof and demonstration, they did not have experience with the proofs and demonstrations in Basic Education and the work with them in the Mathematics Degree was not satisfactory, because they still have a lot of difficulty in writing and understanding them, and do not identify with the area; (2) the undergraduate students, in their majority, presented arguments/justifications within the pragmatic proofs, without an adequate mathematical basis, only validating the statements through experimentation. Only one pair was able to construct mental experience proofs in six out of seven activities, validating their strategies generically; (3) the undergraduate students fluctuated a lot from one level of thinking to another, mainly in activities that involved the same concepts. Because of this, they built different types of proof; (4) the majority of undergraduates understand the difference between particular cases and generic cases in mathematics when analyzing their arguments, justifications and proof of mathematical statements. We check out experimentally that the undergraduates who were at level 4 of van Hiele, managed to elaborate proofs of the mental experience type and those who were at level 3, elaborated proofs of the generic example type. The undergraduates who were at level 2, on the other hand, managed to elaborate two types of pragmatic proofs: naive empiricism and crucial experience, while those who were at level 1, did not take proofs, as they did not feel the need to justify their ideas. Therefore, we can say that the research contributes to Mathematics Education by establishing more specific articulations between van Hiele's levels of geometric thinking and the types of proof proposed by Balacheff, which have not yet been discussed in the literature. In addition, we believe that the results can lead to a reflection on the possibility of differentiating the words proof and demonstration, the teaching of Mathematics in order to develop the mathematical reasoning of students and the teaching of demonstrations in the Mathematics Degree, enabling them to do mathematics.Esta pesquisa de doutorado teve por objetivo estabelecer articulações entre os níveis de pensamento geométrico de van Hiele e os tipos de prova de Balacheff, a partir das discussões trazidas por Jaime e Gutiérrez e Balacheff, e das argumentações/justificações produzidas por licenciandos em Matemática. A pesquisa realizada caracteriza-se como quali-quantitativa, com aspectos de um estudo de caso. Os procedimentos de coleta de dados foram: questionário, atividades com provas matemáticas, notas de campo, observação participante, videogravações e entrevistas semiestruturadas, realizadas após a aplicação das atividades. Participaram da pesquisa onze licenciandos em Matemática de uma universidade pública do estado da Paraíba, que se encontravam entre o 6º e 10º período do curso. Como referencial teórico, utilizamos a abordagem das provas e demonstrações matemáticas sob o olhar de Balacheff e consideramos a abordagem dos níveis de pensamento geométrico sob as discussões de van Hiele, De Villiers, Nasser, Kaleff et al., Dall’Alba, Ontário, Vargas e Araya, Jaime e Gutiérrez, entre outros. A análise dos resultados mostrou que: (1) os licenciandos não sabiam diferenciar as palavras prova e demonstração, não tiveram uma vivência com as provas e demonstrações na Educação Básica e o trabalho com elas na Licenciatura não foi satisfatório, pois eles ainda têm muita dificuldade em escrevê-las e entende-las, e não se identificam com a área; (2) os licenciandos, em sua maioria, apresentaram argumentações/justificações dentro das provas pragmáticas, sem um embasamento matemático adequado, apenas validando as afirmações por meio da experimentação. Somente uma dupla conseguiu em seis de sete atividades construir provas do tipo experiência mental, validando as suas estratégias genericamente; (3) os licenciandos oscilaram muito de um nível de pensamento para outro, principalmente nas atividades que envolviam os mesmos conceitos. Devido a isso, eles construíram diferentes tipos de prova; (4) os licenciandos, em sua maioria, compreendem a diferença entre casos particulares e casos genéricos na Matemática ao analisarem as suas argumentações, justificativas e provas de afirmações matemáticas. Averiguamos experimentalmente que os licenciandos que se encontravam no nível 4 de van Hiele, conseguiram elaborar provas do tipo experiência mental e os que se encontravam no nível 3, elaboraram provas do tipo exemplo genérico. Já os licenciandos que se encontravam no nível 2, conseguiram elaborar dois tipos de provas pragmáticas: empirismo ingênuo e experiência crucial, enquanto àqueles que se encontravam no nível 1, não realizaram provas, pois não sentiram a necessidade de justificar as suas ideias. Portanto, podemos dizer que a pesquisa traz uma contribuição para a Educação Matemática ao estabelecer articulações mais específicas entre os níveis de pensamento geométrico de van Hiele e os tipos de prova propostos por Balacheff, as quais ainda não foram discutidas na literatura. Além disso, acreditamos que os resultados podem levar a uma reflexão sobre a possibilidade de diferenciação das palavras prova e demonstração, o ensino da Matemática com o intuito de desenvolver o raciocínio matemático dos alunos e o ensino das demonstrações na Licenciatura em Matemática possibilitando o fazer matemática.Submitted by Mario BC (mario@bc.ufrpe.br) on 2023-08-11T12:12:24Z No. of bitstreams: 1 Marcella Luanna da Silva Lima.pdf: 6887625 bytes, checksum: 8f2a3be5535bf06baa5b78a3bd10ced1 (MD5)Made available in DSpace on 2023-08-11T12:12:24Z (GMT). No. of bitstreams: 1 Marcella Luanna da Silva Lima.pdf: 6887625 bytes, checksum: 8f2a3be5535bf06baa5b78a3bd10ced1 (MD5) Previous issue date: 2020-03-04application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Ensino das CiênciasUFRPEBrasilDepartamento de EducaçãoLicenciatura em matemáticaGeometriaEducação matemáticaPensamento geométricoCIENCIAS HUMANAS::EDUCACAOUm estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheffinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-6099596823942813476006006007124334461228751377-240345818910352367info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALMarcella Luanna da Silva Lima.pdfMarcella Luanna da Silva Lima.pdfapplication/pdf6887625http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9305/2/Marcella+Luanna+da+Silva+Lima.pdf8f2a3be5535bf06baa5b78a3bd10ced1MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9305/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/93052023-08-11 09:12:24.191oai:tede2:tede2/9305Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:38:06.242222Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff |
title |
Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff |
spellingShingle |
Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff LIMA, Marcella Luanna da Silva Licenciatura em matemática Geometria Educação matemática Pensamento geométrico CIENCIAS HUMANAS::EDUCACAO |
title_short |
Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff |
title_full |
Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff |
title_fullStr |
Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff |
title_full_unstemmed |
Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff |
title_sort |
Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff |
author |
LIMA, Marcella Luanna da Silva |
author_facet |
LIMA, Marcella Luanna da Silva |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
SANTOS, Marcelo Câmara dos |
dc.contributor.referee1.fl_str_mv |
LIMA, Anna Paula de Avelar Brito |
dc.contributor.referee2.fl_str_mv |
ALMEIDA, Jadilson Ramos de |
dc.contributor.referee3.fl_str_mv |
LINS, Abigail Fregni |
dc.contributor.referee4.fl_str_mv |
ALMOULOUD, Saddo Ag |
dc.contributor.author.fl_str_mv |
LIMA, Marcella Luanna da Silva |
contributor_str_mv |
SANTOS, Marcelo Câmara dos LIMA, Anna Paula de Avelar Brito ALMEIDA, Jadilson Ramos de LINS, Abigail Fregni ALMOULOUD, Saddo Ag |
dc.subject.por.fl_str_mv |
Licenciatura em matemática Geometria Educação matemática Pensamento geométrico |
topic |
Licenciatura em matemática Geometria Educação matemática Pensamento geométrico CIENCIAS HUMANAS::EDUCACAO |
dc.subject.cnpq.fl_str_mv |
CIENCIAS HUMANAS::EDUCACAO |
description |
This doctoral research aimed to establish articulations between van Hiele's levels of geometric thinking and Balacheff's types of proof, based on the discussions brought by Jaime and Gutiérrez and Balacheff, and the argumentations/justifications produced by undergraduates in Mathematics. The research carried out is characterized as quali-quantitative, with aspects of a case study. The data collection procedures were: questionnaire, activities with mathematical proofs, field notes, participant observation, video recordings and semi-structured interviews, carried out after the application of the activities. Eleven undergraduates in mathematics from a public university in the state of Paraíba participated in the research, who were between the 6th and 10th period of the course. As a theoretical framework, we used the approach of mathematical proofs and demonstrations under the perspective of Balacheff and considered the approach of the levels of geometric thinking under the discussions of van Hiele, De Villiers, Nasser, Kaleff et al., Dall'Alba, Ontario, Vargas and Araya, Jaime and Gutiérrez, among others. The analysis of the results showed that: (1) the undergraduates did not know how to differentiate the words proof and demonstration, they did not have experience with the proofs and demonstrations in Basic Education and the work with them in the Mathematics Degree was not satisfactory, because they still have a lot of difficulty in writing and understanding them, and do not identify with the area; (2) the undergraduate students, in their majority, presented arguments/justifications within the pragmatic proofs, without an adequate mathematical basis, only validating the statements through experimentation. Only one pair was able to construct mental experience proofs in six out of seven activities, validating their strategies generically; (3) the undergraduate students fluctuated a lot from one level of thinking to another, mainly in activities that involved the same concepts. Because of this, they built different types of proof; (4) the majority of undergraduates understand the difference between particular cases and generic cases in mathematics when analyzing their arguments, justifications and proof of mathematical statements. We check out experimentally that the undergraduates who were at level 4 of van Hiele, managed to elaborate proofs of the mental experience type and those who were at level 3, elaborated proofs of the generic example type. The undergraduates who were at level 2, on the other hand, managed to elaborate two types of pragmatic proofs: naive empiricism and crucial experience, while those who were at level 1, did not take proofs, as they did not feel the need to justify their ideas. Therefore, we can say that the research contributes to Mathematics Education by establishing more specific articulations between van Hiele's levels of geometric thinking and the types of proof proposed by Balacheff, which have not yet been discussed in the literature. In addition, we believe that the results can lead to a reflection on the possibility of differentiating the words proof and demonstration, the teaching of Mathematics in order to develop the mathematical reasoning of students and the teaching of demonstrations in the Mathematics Degree, enabling them to do mathematics. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-03-04 |
dc.date.accessioned.fl_str_mv |
2023-08-11T12:12:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LIMA, Marcella Luanna da Silva. Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff. 2020. 400 f. Tese (Programa de Pós-Graduação em Ensino das Ciências) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9305 |
identifier_str_mv |
LIMA, Marcella Luanna da Silva. Um estudo sobre as provas e demonstrações na licenciatura em matemática : articulações entre os níveis de pensamento geométrico de Van Hiele e os tipos de prova de Balacheff. 2020. 400 f. Tese (Programa de Pós-Graduação em Ensino das Ciências) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9305 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-609959682394281347 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
7124334461228751377 |
dc.relation.cnpq.fl_str_mv |
-240345818910352367 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ensino das Ciências |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Educação |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9305/2/Marcella+Luanna+da+Silva+Lima.pdf http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9305/1/license.txt |
bitstream.checksum.fl_str_mv |
8f2a3be5535bf06baa5b78a3bd10ced1 bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102274386558976 |