Exploring linguistic information and semantic contextual models for a relation extraction task using deep learning

Detalhes bibliográficos
Autor(a) principal: Schmitt, Bruna Koch
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
Texto Completo: http://www.repositorio.jesuita.org.br/handle/UNISINOS/9214
Resumo: Deep Learning (DL) methods have been extensively used in many Natural Language Processing (NLP) tasks, including in semantic relation extraction. However, the performance of these methods is dependent on the type and quality of information being used as features. In NLP, linguistic information is being increasingly used to improve the performance of DL algorithms, such as pre-trained word embeddings, part-of-speech (POS) tags, synonyms, etc, and the use of linguistic information is now present in several state-of-the-art algorithms in relation extraction. However, no effort has been made to understand exactly the impact that linguistic information from different levels of abstraction (morphological, syntactic, semantic) has in these algorithms in a semantic relation extraction task, which we believe may bring insights in the way deep learning algorithms generalize language constructs when compared to the way humans process language. To do this, we have performed several experiments using a recurrent neural network (RNN) and analyzed how the linguistic information (part-of-speech tags, dependency tags, hypernyms, frames, verb classes) and different word embeddings (tokenizer, word2vec, GloVe, and BERT) impact on the model performance. From our results, we were able to see that different word embeddings techniques did not present significant difference on the performance. Considering the linguistic information, the hypernyms did improve the model performance, however the improvement was small, therefore it may not be cost effective to use a semantic resource to achieve this degree of improvement. Overall, our model performed significantly well compared to the existing models from the literature, given the simplicity of the deep learning architecture used, and for some experiments our model outperformed several models presented in the literature. We conclude that with this analysis we were able to reach a better understanding of whether deep learning algorithms require linguistic information across distinct levels of abstraction to achieve human-like performance in a semantic task.
id USIN_4982ca026ef8a052eb554b3621fda0fd
oai_identifier_str oai:www.repositorio.jesuita.org.br:UNISINOS/9214
network_acronym_str USIN
network_name_str Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
repository_id_str
spelling 2020-07-27T20:33:49Z2020-07-27T20:33:49Z2020-03-23Submitted by Maicon Juliano Schmidt (maicons) on 2020-07-27T20:33:49Z No. of bitstreams: 1 Bruna Koch Schmitt_.pdf: 6079007 bytes, checksum: fb61ee0fa3115d6f6cbe7634600c9bd3 (MD5)Made available in DSpace on 2020-07-27T20:33:49Z (GMT). No. of bitstreams: 1 Bruna Koch Schmitt_.pdf: 6079007 bytes, checksum: fb61ee0fa3115d6f6cbe7634600c9bd3 (MD5) Previous issue date: 2020-03-23Deep Learning (DL) methods have been extensively used in many Natural Language Processing (NLP) tasks, including in semantic relation extraction. However, the performance of these methods is dependent on the type and quality of information being used as features. In NLP, linguistic information is being increasingly used to improve the performance of DL algorithms, such as pre-trained word embeddings, part-of-speech (POS) tags, synonyms, etc, and the use of linguistic information is now present in several state-of-the-art algorithms in relation extraction. However, no effort has been made to understand exactly the impact that linguistic information from different levels of abstraction (morphological, syntactic, semantic) has in these algorithms in a semantic relation extraction task, which we believe may bring insights in the way deep learning algorithms generalize language constructs when compared to the way humans process language. To do this, we have performed several experiments using a recurrent neural network (RNN) and analyzed how the linguistic information (part-of-speech tags, dependency tags, hypernyms, frames, verb classes) and different word embeddings (tokenizer, word2vec, GloVe, and BERT) impact on the model performance. From our results, we were able to see that different word embeddings techniques did not present significant difference on the performance. Considering the linguistic information, the hypernyms did improve the model performance, however the improvement was small, therefore it may not be cost effective to use a semantic resource to achieve this degree of improvement. Overall, our model performed significantly well compared to the existing models from the literature, given the simplicity of the deep learning architecture used, and for some experiments our model outperformed several models presented in the literature. We conclude that with this analysis we were able to reach a better understanding of whether deep learning algorithms require linguistic information across distinct levels of abstraction to achieve human-like performance in a semantic task.Métodos de Aprendizado Profundo (AP) tem sido usados em muitas tarefas de Processamento de Linguagem Natural (PLN), inclusive em tarefas de extração de relações semânticas. Entretanto, a performance dos métodos é dependente do tipo e qualidade da informação dada ao algoritmo como características. Em PLN, informações linguísticas tem sido cada vez mais usadas para melhorar a performance de algoritmos de AP, como por exemplo, vetores de palavras pré-treinados, marcadores sintáticos, sinônimos, etc, e atualmente o uso de informações linguísticas está presente nos algoritmos de extração de relações do estado da arte. Porém, não tem sido o foco dessas pesquisas entender exatamente o impacto que o uso de informações linguísticas advindas de níveis distintos de abstração (morfológico, sintático, semântico) tem nos algoritmos aplicados a extração de relações, o que em nossa opinião pode trazer um maior conhecimento da forma que algoritmos de aprendizado profundo generalizam construtos da linguagem quando comparados com a forma que humanos processam a linguagem. Para atingir esse objetivo, realizamos vários experimentos usando uma rede neural recorrente e analizamos qual o impacto que informações linguísticas (categorias gramaticais, categorias sintáticas, hiperônimos, frames e classes verbais) e word embeddings (tokenizer, word2vec, Glove e BERT) tem na performance do modelo. A partir dos nossos resultados, vimos que os diferentes tipos de word embeddings não apresentaram uma diferença significativa na performance. Considerando a informação linguística, o uso de hiperônimos demonstrou uma melhora de performance do modelo, porém considerando que a melhora foi pequena, entendemos que pode não haver um melhor custo-benefício em usar esse recurso semântico para atingir uma melhora pequena de performance. De forma geral, nosso modelo atingiu uma performance boa comparada aos modelos da literatura, especialmente dada a simplicidade da arquitetura de aprendizado profundo usada nos experimentos. E ainda para alguns experimentos, nosso modelo teve a performance melhor que modelos apresentados na literatura. Em conclusão, consideramos que com essa análise obtivemos um melhor entendimento no quesito se os modelos de aprendizado profundo se beneficiam de informação linguística oriunda de distintos níveis de abstração linguística para atingir uma performance próxima à humana em uma tarefa semântica.Bolsa Talento Tecnosinos/SENAISchmitt, Bruna Kochhttp://lattes.cnpq.br/2607626313157272http://lattes.cnpq.br/3914159735707328Rigo, Sandro JoséUniversidade do Vale do Rio dos SinosPrograma de Pós-Graduação em Computação AplicadaUnisinosBrasilEscola PolitécnicaExploring linguistic information and semantic contextual models for a relation extraction task using deep learningACCNPQ::Ciências Exatas e da Terra::Ciência da ComputaçãoProcessamento de linguagem naturalExtração de relaçõesAprendizado profundoNatural language processingRelation extractionDeep learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.repositorio.jesuita.org.br/handle/UNISINOS/9214info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)instname:Universidade do Vale do Rio dos Sinos (UNISINOS)instacron:UNISINOSORIGINALBruna Koch Schmitt_.pdfBruna Koch Schmitt_.pdfapplication/pdf6079007http://repositorio.jesuita.org.br/bitstream/UNISINOS/9214/1/Bruna+Koch+Schmitt_.pdffb61ee0fa3115d6f6cbe7634600c9bd3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82175http://repositorio.jesuita.org.br/bitstream/UNISINOS/9214/2/license.txt320e21f23402402ac4988605e1edd177MD52UNISINOS/92142020-07-27 17:35:34.451oai:www.repositorio.jesuita.org.br:UNISINOS/9214Ck5PVEE6IENPTE9RVUUgQVFVSSBBIFNVQSBQUsOTUFJJQSBMSUNFTsOHQQoKRXN0YSBsaWNlbsOnYSBkZSBleGVtcGxvIMOpIGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxpY2Vuw6dhIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIApVbml2ZXJzaWRhZGUgZG8gVmFsZSBkbyBSaW8gZG9zIFNpbm9zIChVTklTSU5PUykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdSAKZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IApjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogCmRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciDDoCBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgU0lHTEEgREUgClVOSVZFUlNJREFERSwgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyAKY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KBiblioteca Digital de Teses e Dissertaçõeshttp://www.repositorio.jesuita.org.br/oai/requestopendoar:2020-07-27T20:35:34Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) - Universidade do Vale do Rio dos Sinos (UNISINOS)false
dc.title.en.fl_str_mv Exploring linguistic information and semantic contextual models for a relation extraction task using deep learning
title Exploring linguistic information and semantic contextual models for a relation extraction task using deep learning
spellingShingle Exploring linguistic information and semantic contextual models for a relation extraction task using deep learning
Schmitt, Bruna Koch
ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação
Processamento de linguagem natural
Extração de relações
Aprendizado profundo
Natural language processing
Relation extraction
Deep learning
title_short Exploring linguistic information and semantic contextual models for a relation extraction task using deep learning
title_full Exploring linguistic information and semantic contextual models for a relation extraction task using deep learning
title_fullStr Exploring linguistic information and semantic contextual models for a relation extraction task using deep learning
title_full_unstemmed Exploring linguistic information and semantic contextual models for a relation extraction task using deep learning
title_sort Exploring linguistic information and semantic contextual models for a relation extraction task using deep learning
author Schmitt, Bruna Koch
author_facet Schmitt, Bruna Koch
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2607626313157272
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3914159735707328
dc.contributor.author.fl_str_mv Schmitt, Bruna Koch
dc.contributor.advisor1.fl_str_mv Rigo, Sandro José
contributor_str_mv Rigo, Sandro José
dc.subject.cnpq.fl_str_mv ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação
topic ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação
Processamento de linguagem natural
Extração de relações
Aprendizado profundo
Natural language processing
Relation extraction
Deep learning
dc.subject.por.fl_str_mv Processamento de linguagem natural
Extração de relações
Aprendizado profundo
dc.subject.eng.fl_str_mv Natural language processing
Relation extraction
Deep learning
description Deep Learning (DL) methods have been extensively used in many Natural Language Processing (NLP) tasks, including in semantic relation extraction. However, the performance of these methods is dependent on the type and quality of information being used as features. In NLP, linguistic information is being increasingly used to improve the performance of DL algorithms, such as pre-trained word embeddings, part-of-speech (POS) tags, synonyms, etc, and the use of linguistic information is now present in several state-of-the-art algorithms in relation extraction. However, no effort has been made to understand exactly the impact that linguistic information from different levels of abstraction (morphological, syntactic, semantic) has in these algorithms in a semantic relation extraction task, which we believe may bring insights in the way deep learning algorithms generalize language constructs when compared to the way humans process language. To do this, we have performed several experiments using a recurrent neural network (RNN) and analyzed how the linguistic information (part-of-speech tags, dependency tags, hypernyms, frames, verb classes) and different word embeddings (tokenizer, word2vec, GloVe, and BERT) impact on the model performance. From our results, we were able to see that different word embeddings techniques did not present significant difference on the performance. Considering the linguistic information, the hypernyms did improve the model performance, however the improvement was small, therefore it may not be cost effective to use a semantic resource to achieve this degree of improvement. Overall, our model performed significantly well compared to the existing models from the literature, given the simplicity of the deep learning architecture used, and for some experiments our model outperformed several models presented in the literature. We conclude that with this analysis we were able to reach a better understanding of whether deep learning algorithms require linguistic information across distinct levels of abstraction to achieve human-like performance in a semantic task.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-07-27T20:33:49Z
dc.date.available.fl_str_mv 2020-07-27T20:33:49Z
dc.date.issued.fl_str_mv 2020-03-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.repositorio.jesuita.org.br/handle/UNISINOS/9214
url http://www.repositorio.jesuita.org.br/handle/UNISINOS/9214
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade do Vale do Rio dos Sinos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Computação Aplicada
dc.publisher.initials.fl_str_mv Unisinos
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola Politécnica
publisher.none.fl_str_mv Universidade do Vale do Rio dos Sinos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
instname:Universidade do Vale do Rio dos Sinos (UNISINOS)
instacron:UNISINOS
instname_str Universidade do Vale do Rio dos Sinos (UNISINOS)
instacron_str UNISINOS
institution UNISINOS
reponame_str Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
collection Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
bitstream.url.fl_str_mv http://repositorio.jesuita.org.br/bitstream/UNISINOS/9214/1/Bruna+Koch+Schmitt_.pdf
http://repositorio.jesuita.org.br/bitstream/UNISINOS/9214/2/license.txt
bitstream.checksum.fl_str_mv fb61ee0fa3115d6f6cbe7634600c9bd3
320e21f23402402ac4988605e1edd177
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) - Universidade do Vale do Rio dos Sinos (UNISINOS)
repository.mail.fl_str_mv
_version_ 1801845040425730048