Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of applied oral science (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572020000100471 |
Resumo: | Abstract Objective: This study analyzed the effect of ionizing radiation on bone microarchitecture and biomechanical properties in the bone tissue surrounding a dental implant. Methodology: Twenty rabbits received three dental morse taper junction implants: one in the left tibia and two in the right tibia. The animals were randomized into two groups: the nonirradiated group (control group) and the irradiated group, which received 30 Gy in a single dose 2 weeks after the implant procedure. Four weeks after the implant procedure, the animals were sacrificed, and the implant/bone specimens were used for each experiment. The specimens (n=10) of the right tibia were examined by microcomputed tomography to measure the cortical volume (CtV, mm3), cortical thickness (CtTh, mm) and porosity (CtPo, %). The other specimens (n=10) were examined by dynamic indentation to measure the elastic modulus (E, GPa) and Vickers hardness (VHN, N/mm2) in the bone. The specimens of the left tibia (n=10) were subjected to pull-out tests to calculate the failure load (N), displacement (mm) up to the failure point and interface stiffness (N/mm). In the irradiated group, two measurements were performed: close, at 1 mm surrounding the implant surface, and distant, at 2.5 mm from the external limit of the first measurement. Data were analyzed using one-way ANOVA, Tukey’s test and Student’s t-test (α=0.05). Results: The irradiated bone closer to the implant surface had lower elastic modulus (E), Vickers hardness (VHN), Ct.Th, and Ct.V values and a higher Ct.Po value than the bone distant to the implant (P<0.04). The irradiated bone that was distant from the implant surface had lower E, VHN, and Ct.Th values and a higher Ct.Po value than the nonirradiated bone (P<0.04). The nonirradiated bone had higher failure loads, displacements and stiffness values than the irradiated bone (P<0.02). Conclusion: Ionizing radiation in dental implants resulted in negative effects on the microarchitecture and biomechanical properties of bone tissue, mainly near the surface of the implant. |
id |
USP-17_52547c20878da42a32dc960b41da92ed |
---|---|
oai_identifier_str |
oai:scielo:S1678-77572020000100471 |
network_acronym_str |
USP-17 |
network_name_str |
Journal of applied oral science (Online) |
repository_id_str |
|
spelling |
Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implantBoneBonesDental implantsRadiation, ionizingBiomechanical phenomenaX-ray microtomographyAbstract Objective: This study analyzed the effect of ionizing radiation on bone microarchitecture and biomechanical properties in the bone tissue surrounding a dental implant. Methodology: Twenty rabbits received three dental morse taper junction implants: one in the left tibia and two in the right tibia. The animals were randomized into two groups: the nonirradiated group (control group) and the irradiated group, which received 30 Gy in a single dose 2 weeks after the implant procedure. Four weeks after the implant procedure, the animals were sacrificed, and the implant/bone specimens were used for each experiment. The specimens (n=10) of the right tibia were examined by microcomputed tomography to measure the cortical volume (CtV, mm3), cortical thickness (CtTh, mm) and porosity (CtPo, %). The other specimens (n=10) were examined by dynamic indentation to measure the elastic modulus (E, GPa) and Vickers hardness (VHN, N/mm2) in the bone. The specimens of the left tibia (n=10) were subjected to pull-out tests to calculate the failure load (N), displacement (mm) up to the failure point and interface stiffness (N/mm). In the irradiated group, two measurements were performed: close, at 1 mm surrounding the implant surface, and distant, at 2.5 mm from the external limit of the first measurement. Data were analyzed using one-way ANOVA, Tukey’s test and Student’s t-test (α=0.05). Results: The irradiated bone closer to the implant surface had lower elastic modulus (E), Vickers hardness (VHN), Ct.Th, and Ct.V values and a higher Ct.Po value than the bone distant to the implant (P<0.04). The irradiated bone that was distant from the implant surface had lower E, VHN, and Ct.Th values and a higher Ct.Po value than the nonirradiated bone (P<0.04). The nonirradiated bone had higher failure loads, displacements and stiffness values than the irradiated bone (P<0.02). Conclusion: Ionizing radiation in dental implants resulted in negative effects on the microarchitecture and biomechanical properties of bone tissue, mainly near the surface of the implant.Faculdade De Odontologia De Bauru - USP2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572020000100471Journal of Applied Oral Science v.28 2020reponame:Journal of applied oral science (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/1678-7757-2020-0191info:eu-repo/semantics/openAccessSoares,Priscilla Barbosa FerreiraSoares,Carlos JoséLimirio,Pedro Henrique Justino OliveiraLara,Vitor CarvalhoMoura,Camilla Christian GomesZanetta-Barbosa,Darcenyeng2020-09-25T00:00:00Zoai:scielo:S1678-77572020000100471Revistahttp://www.scielo.br/jaosPUBhttps://old.scielo.br/oai/scielo-oai.php||jaos@usp.br1678-77651678-7757opendoar:2020-09-25T00:00Journal of applied oral science (Online) - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant |
title |
Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant |
spellingShingle |
Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant Soares,Priscilla Barbosa Ferreira Bone Bones Dental implants Radiation, ionizing Biomechanical phenomena X-ray microtomography |
title_short |
Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant |
title_full |
Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant |
title_fullStr |
Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant |
title_full_unstemmed |
Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant |
title_sort |
Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant |
author |
Soares,Priscilla Barbosa Ferreira |
author_facet |
Soares,Priscilla Barbosa Ferreira Soares,Carlos José Limirio,Pedro Henrique Justino Oliveira Lara,Vitor Carvalho Moura,Camilla Christian Gomes Zanetta-Barbosa,Darceny |
author_role |
author |
author2 |
Soares,Carlos José Limirio,Pedro Henrique Justino Oliveira Lara,Vitor Carvalho Moura,Camilla Christian Gomes Zanetta-Barbosa,Darceny |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Soares,Priscilla Barbosa Ferreira Soares,Carlos José Limirio,Pedro Henrique Justino Oliveira Lara,Vitor Carvalho Moura,Camilla Christian Gomes Zanetta-Barbosa,Darceny |
dc.subject.por.fl_str_mv |
Bone Bones Dental implants Radiation, ionizing Biomechanical phenomena X-ray microtomography |
topic |
Bone Bones Dental implants Radiation, ionizing Biomechanical phenomena X-ray microtomography |
description |
Abstract Objective: This study analyzed the effect of ionizing radiation on bone microarchitecture and biomechanical properties in the bone tissue surrounding a dental implant. Methodology: Twenty rabbits received three dental morse taper junction implants: one in the left tibia and two in the right tibia. The animals were randomized into two groups: the nonirradiated group (control group) and the irradiated group, which received 30 Gy in a single dose 2 weeks after the implant procedure. Four weeks after the implant procedure, the animals were sacrificed, and the implant/bone specimens were used for each experiment. The specimens (n=10) of the right tibia were examined by microcomputed tomography to measure the cortical volume (CtV, mm3), cortical thickness (CtTh, mm) and porosity (CtPo, %). The other specimens (n=10) were examined by dynamic indentation to measure the elastic modulus (E, GPa) and Vickers hardness (VHN, N/mm2) in the bone. The specimens of the left tibia (n=10) were subjected to pull-out tests to calculate the failure load (N), displacement (mm) up to the failure point and interface stiffness (N/mm). In the irradiated group, two measurements were performed: close, at 1 mm surrounding the implant surface, and distant, at 2.5 mm from the external limit of the first measurement. Data were analyzed using one-way ANOVA, Tukey’s test and Student’s t-test (α=0.05). Results: The irradiated bone closer to the implant surface had lower elastic modulus (E), Vickers hardness (VHN), Ct.Th, and Ct.V values and a higher Ct.Po value than the bone distant to the implant (P<0.04). The irradiated bone that was distant from the implant surface had lower E, VHN, and Ct.Th values and a higher Ct.Po value than the nonirradiated bone (P<0.04). The nonirradiated bone had higher failure loads, displacements and stiffness values than the irradiated bone (P<0.02). Conclusion: Ionizing radiation in dental implants resulted in negative effects on the microarchitecture and biomechanical properties of bone tissue, mainly near the surface of the implant. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572020000100471 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572020000100471 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-7757-2020-0191 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Faculdade De Odontologia De Bauru - USP |
publisher.none.fl_str_mv |
Faculdade De Odontologia De Bauru - USP |
dc.source.none.fl_str_mv |
Journal of Applied Oral Science v.28 2020 reponame:Journal of applied oral science (Online) instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Journal of applied oral science (Online) |
collection |
Journal of applied oral science (Online) |
repository.name.fl_str_mv |
Journal of applied oral science (Online) - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
||jaos@usp.br |
_version_ |
1748936440871387136 |