Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of applied oral science (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572016000300291 |
Resumo: | ABSTRACT Sodium hypochlorite (NaOCl) remains the most used irrigation solution during root canal preparation because of characteristics such as wide-spectrum antimicrobial activity and organic tissue dissolution capacity. However, these solutions can alter dentin composition and there is no consensus on the optimal concentration of NaOCl to be used. Objectives To determine the organic matter dissolution and changes in dentin chemical composition promoted by different concentrations of NaOCl over time. Material and Methods: Fragments of bovine muscle tissue were weighed before and after 5, 10, and 15 min of immersion in the groups (n=10): G1- 0.9% saline solution; G2- 1% NaOCl; G3- 2.5% NaOCl; and G4- 5% NaOCl. Bovine dentin fragments were subjected to the same irrigants and absorption spectra were collected by Attenuated Total Reflectance of Fourier Transform Infrared Spectroscopy (ATR-FTIR) before and after 0,5, 1, 2, 3, 5, 8, and 10 min of immersion in the solutions. The ratios of the amide III/phosphate and carbonate/phosphate absorption bands were determined. The tissue dissolution and carbonate/phosphate ratios were submitted to the two-way analysis of variance (ANOVA) with Tukey’s multiple-comparison test (α<0.05) and to the one-way analysis of variance with Tukey’s (α<0.05). The amide III/phosphate ratio was analyzed by Friedman test (α<0.05) and the Kruskal-Wallis test with Dunn’s post-hoc (α<0.05). Results The increase in NaOCl concentration and contact time intensified the dissolution of organic matter and dentin collagen with reduction in the amide III/phosphate ratio. Significant differences between all groups (p<0.05) were observed in the dissolution of organic matter at 10 min and in the amide III/phosphate ratio between the saline solution and 5% NaOCl at 5 min. The carbonate/phosphate ratio decreased significantly in G2, G3, and G4 after 0,5 min of immersion (p<0.05), but more alterations did not occur in the subsequent periods (p>0.05). Intergroup differences were not observed in this ratio (p>0.05). Conclusions The increase in the exposure time and in the concentration of NaOCl solution lead to an increase in the tissue dissolution and dentin collagen deproteination. Furthermore, some carbonate ions are removed from the dentin inorganic phase by the NaOCl. |
id |
USP-17_718fd2d28979e37cf9341f82570e6059 |
---|---|
oai_identifier_str |
oai:scielo:S1678-77572016000300291 |
network_acronym_str |
USP-17 |
network_name_str |
Journal of applied oral science (Online) |
repository_id_str |
|
spelling |
Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrationsDentinDissolutionFourier transform infrared spectroscopyOrganic matterSodium hypochloriteABSTRACT Sodium hypochlorite (NaOCl) remains the most used irrigation solution during root canal preparation because of characteristics such as wide-spectrum antimicrobial activity and organic tissue dissolution capacity. However, these solutions can alter dentin composition and there is no consensus on the optimal concentration of NaOCl to be used. Objectives To determine the organic matter dissolution and changes in dentin chemical composition promoted by different concentrations of NaOCl over time. Material and Methods: Fragments of bovine muscle tissue were weighed before and after 5, 10, and 15 min of immersion in the groups (n=10): G1- 0.9% saline solution; G2- 1% NaOCl; G3- 2.5% NaOCl; and G4- 5% NaOCl. Bovine dentin fragments were subjected to the same irrigants and absorption spectra were collected by Attenuated Total Reflectance of Fourier Transform Infrared Spectroscopy (ATR-FTIR) before and after 0,5, 1, 2, 3, 5, 8, and 10 min of immersion in the solutions. The ratios of the amide III/phosphate and carbonate/phosphate absorption bands were determined. The tissue dissolution and carbonate/phosphate ratios were submitted to the two-way analysis of variance (ANOVA) with Tukey’s multiple-comparison test (α<0.05) and to the one-way analysis of variance with Tukey’s (α<0.05). The amide III/phosphate ratio was analyzed by Friedman test (α<0.05) and the Kruskal-Wallis test with Dunn’s post-hoc (α<0.05). Results The increase in NaOCl concentration and contact time intensified the dissolution of organic matter and dentin collagen with reduction in the amide III/phosphate ratio. Significant differences between all groups (p<0.05) were observed in the dissolution of organic matter at 10 min and in the amide III/phosphate ratio between the saline solution and 5% NaOCl at 5 min. The carbonate/phosphate ratio decreased significantly in G2, G3, and G4 after 0,5 min of immersion (p<0.05), but more alterations did not occur in the subsequent periods (p>0.05). Intergroup differences were not observed in this ratio (p>0.05). Conclusions The increase in the exposure time and in the concentration of NaOCl solution lead to an increase in the tissue dissolution and dentin collagen deproteination. Furthermore, some carbonate ions are removed from the dentin inorganic phase by the NaOCl.Faculdade De Odontologia De Bauru - USP2016-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572016000300291Journal of Applied Oral Science v.24 n.3 2016reponame:Journal of applied oral science (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/1678-775720150524info:eu-repo/semantics/openAccessTARTARI,TalitaBACHMANN,LucianoMALIZA,Amanda Garcia AlvesANDRADE,Flaviana BombardaDUARTE,Marco Antonio HungaroBRAMANTE,Clovis Monteiroeng2016-06-30T00:00:00Zoai:scielo:S1678-77572016000300291Revistahttp://www.scielo.br/jaosPUBhttps://old.scielo.br/oai/scielo-oai.php||jaos@usp.br1678-77651678-7757opendoar:2016-06-30T00:00Journal of applied oral science (Online) - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations |
title |
Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations |
spellingShingle |
Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations TARTARI,Talita Dentin Dissolution Fourier transform infrared spectroscopy Organic matter Sodium hypochlorite |
title_short |
Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations |
title_full |
Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations |
title_fullStr |
Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations |
title_full_unstemmed |
Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations |
title_sort |
Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations |
author |
TARTARI,Talita |
author_facet |
TARTARI,Talita BACHMANN,Luciano MALIZA,Amanda Garcia Alves ANDRADE,Flaviana Bombarda DUARTE,Marco Antonio Hungaro BRAMANTE,Clovis Monteiro |
author_role |
author |
author2 |
BACHMANN,Luciano MALIZA,Amanda Garcia Alves ANDRADE,Flaviana Bombarda DUARTE,Marco Antonio Hungaro BRAMANTE,Clovis Monteiro |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
TARTARI,Talita BACHMANN,Luciano MALIZA,Amanda Garcia Alves ANDRADE,Flaviana Bombarda DUARTE,Marco Antonio Hungaro BRAMANTE,Clovis Monteiro |
dc.subject.por.fl_str_mv |
Dentin Dissolution Fourier transform infrared spectroscopy Organic matter Sodium hypochlorite |
topic |
Dentin Dissolution Fourier transform infrared spectroscopy Organic matter Sodium hypochlorite |
description |
ABSTRACT Sodium hypochlorite (NaOCl) remains the most used irrigation solution during root canal preparation because of characteristics such as wide-spectrum antimicrobial activity and organic tissue dissolution capacity. However, these solutions can alter dentin composition and there is no consensus on the optimal concentration of NaOCl to be used. Objectives To determine the organic matter dissolution and changes in dentin chemical composition promoted by different concentrations of NaOCl over time. Material and Methods: Fragments of bovine muscle tissue were weighed before and after 5, 10, and 15 min of immersion in the groups (n=10): G1- 0.9% saline solution; G2- 1% NaOCl; G3- 2.5% NaOCl; and G4- 5% NaOCl. Bovine dentin fragments were subjected to the same irrigants and absorption spectra were collected by Attenuated Total Reflectance of Fourier Transform Infrared Spectroscopy (ATR-FTIR) before and after 0,5, 1, 2, 3, 5, 8, and 10 min of immersion in the solutions. The ratios of the amide III/phosphate and carbonate/phosphate absorption bands were determined. The tissue dissolution and carbonate/phosphate ratios were submitted to the two-way analysis of variance (ANOVA) with Tukey’s multiple-comparison test (α<0.05) and to the one-way analysis of variance with Tukey’s (α<0.05). The amide III/phosphate ratio was analyzed by Friedman test (α<0.05) and the Kruskal-Wallis test with Dunn’s post-hoc (α<0.05). Results The increase in NaOCl concentration and contact time intensified the dissolution of organic matter and dentin collagen with reduction in the amide III/phosphate ratio. Significant differences between all groups (p<0.05) were observed in the dissolution of organic matter at 10 min and in the amide III/phosphate ratio between the saline solution and 5% NaOCl at 5 min. The carbonate/phosphate ratio decreased significantly in G2, G3, and G4 after 0,5 min of immersion (p<0.05), but more alterations did not occur in the subsequent periods (p>0.05). Intergroup differences were not observed in this ratio (p>0.05). Conclusions The increase in the exposure time and in the concentration of NaOCl solution lead to an increase in the tissue dissolution and dentin collagen deproteination. Furthermore, some carbonate ions are removed from the dentin inorganic phase by the NaOCl. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572016000300291 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572016000300291 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-775720150524 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Faculdade De Odontologia De Bauru - USP |
publisher.none.fl_str_mv |
Faculdade De Odontologia De Bauru - USP |
dc.source.none.fl_str_mv |
Journal of Applied Oral Science v.24 n.3 2016 reponame:Journal of applied oral science (Online) instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Journal of applied oral science (Online) |
collection |
Journal of applied oral science (Online) |
repository.name.fl_str_mv |
Journal of applied oral science (Online) - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
||jaos@usp.br |
_version_ |
1748936438993387520 |