Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements

Detalhes bibliográficos
Autor(a) principal: Nobuaki,ARAO
Data de Publicação: 2015
Outros Autores: Keiichi,YOSHIDA, Takashi,SAWASE
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of applied oral science (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572015000600629
Resumo: ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP.
id USP-17_7454a86b79b45e343f3dffb5d4982a90
oai_identifier_str oai:scielo:S1678-77572015000600629
network_acronym_str USP-17
network_name_str Journal of applied oral science (Online)
repository_id_str
spelling Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cementsComposite resinsCementationShear strengthABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP.Faculdade De Odontologia De Bauru - USP2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572015000600629Journal of Applied Oral Science v.23 n.6 2015reponame:Journal of applied oral science (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/1678-775720150261info:eu-repo/semantics/openAccessNobuaki,ARAOKeiichi,YOSHIDATakashi,SAWASEeng2016-05-12T00:00:00Zoai:scielo:S1678-77572015000600629Revistahttp://www.scielo.br/jaosPUBhttps://old.scielo.br/oai/scielo-oai.php||jaos@usp.br1678-77651678-7757opendoar:2016-05-12T00:00Journal of applied oral science (Online) - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements
title Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements
spellingShingle Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements
Nobuaki,ARAO
Composite resins
Cementation
Shear strength
title_short Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements
title_full Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements
title_fullStr Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements
title_full_unstemmed Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements
title_sort Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements
author Nobuaki,ARAO
author_facet Nobuaki,ARAO
Keiichi,YOSHIDA
Takashi,SAWASE
author_role author
author2 Keiichi,YOSHIDA
Takashi,SAWASE
author2_role author
author
dc.contributor.author.fl_str_mv Nobuaki,ARAO
Keiichi,YOSHIDA
Takashi,SAWASE
dc.subject.por.fl_str_mv Composite resins
Cementation
Shear strength
topic Composite resins
Cementation
Shear strength
description ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572015000600629
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572015000600629
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1678-775720150261
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Faculdade De Odontologia De Bauru - USP
publisher.none.fl_str_mv Faculdade De Odontologia De Bauru - USP
dc.source.none.fl_str_mv Journal of Applied Oral Science v.23 n.6 2015
reponame:Journal of applied oral science (Online)
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Journal of applied oral science (Online)
collection Journal of applied oral science (Online)
repository.name.fl_str_mv Journal of applied oral science (Online) - Universidade de São Paulo (USP)
repository.mail.fl_str_mv ||jaos@usp.br
_version_ 1748936438632677376