Localized mechanics of dentin self-etching adhesive system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of applied oral science (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572007000400015 |
Resumo: | The bond strength of composite resins (CRs) to dentin is influenced by the interfacial microstructure of the hybrid layer (HL) and the resin tags (TAG). The contemporary self-etching primer adhesive systems overcame the inconvenient of the etch-and-rinse protocol. Studies, however, have demonstrated that HL thickness and TAG length vary according to the wetting time and additional use of acid-etching prior to self-etching primers. This study investigated the localized stress distribution in the HL and the dentin/adhesive interface. Two HL thicknesses (3 or 6 µm), two TAG lengths (13 or 17 µm) and two loading conditions (perpendicular and oblique-25º) were investigated by the finite element (FE) analysis. Five two-dimensional FE models (M) of a dentin specimen restored with CR (38 x 64 µm) were constructed: M1 - no HL and no TAG; M2 - 3 µm of HL and 13 µm of TAG; M3 - 3 µm of HL and 17 µm of TAG; M4 - 6 µm of HL and 13 µm of TAG; and M5 - 6 µm of HL and 17 µm of TAG. Two distributed loadings (L) (20N) were applied on CR surface: L1 - perpendicular, and L2 - oblique (25º). Fixed interfacial conditions were assigned on the border of the dentin specimen. Ansys 10.0 (Ansys®, Houston, PA, USA) software was used to calculate the stress fields. The peak of von Mises (sigmavM) and maximum principal stress (sigmamax) was higher in L2 than in L1. Microstructures (HL and TAG) had no effect on local stresses for L1. Decreasing HL decreased sigmavM and sigmamax in all structures for L2, but the TAG length had influence only on the peributular dentin. The thickness of HL had more influence on the sigmavM and sigmamax than TAG length. The peritubular dentin and its adjacent structures showed the highest sigmavM and sigmamax, mainly in the oblique loading. |
id |
USP-17_9d0b5a85df9f5cca01b876fd6e28a794 |
---|---|
oai_identifier_str |
oai:scielo:S1678-77572007000400015 |
network_acronym_str |
USP-17 |
network_name_str |
Journal of applied oral science (Online) |
repository_id_str |
|
spelling |
Localized mechanics of dentin self-etching adhesive systemDentin-bonding agentsFinite element analysisDentinDental acid etchingThe bond strength of composite resins (CRs) to dentin is influenced by the interfacial microstructure of the hybrid layer (HL) and the resin tags (TAG). The contemporary self-etching primer adhesive systems overcame the inconvenient of the etch-and-rinse protocol. Studies, however, have demonstrated that HL thickness and TAG length vary according to the wetting time and additional use of acid-etching prior to self-etching primers. This study investigated the localized stress distribution in the HL and the dentin/adhesive interface. Two HL thicknesses (3 or 6 µm), two TAG lengths (13 or 17 µm) and two loading conditions (perpendicular and oblique-25º) were investigated by the finite element (FE) analysis. Five two-dimensional FE models (M) of a dentin specimen restored with CR (38 x 64 µm) were constructed: M1 - no HL and no TAG; M2 - 3 µm of HL and 13 µm of TAG; M3 - 3 µm of HL and 17 µm of TAG; M4 - 6 µm of HL and 13 µm of TAG; and M5 - 6 µm of HL and 17 µm of TAG. Two distributed loadings (L) (20N) were applied on CR surface: L1 - perpendicular, and L2 - oblique (25º). Fixed interfacial conditions were assigned on the border of the dentin specimen. Ansys 10.0 (Ansys®, Houston, PA, USA) software was used to calculate the stress fields. The peak of von Mises (sigmavM) and maximum principal stress (sigmamax) was higher in L2 than in L1. Microstructures (HL and TAG) had no effect on local stresses for L1. Decreasing HL decreased sigmavM and sigmamax in all structures for L2, but the TAG length had influence only on the peributular dentin. The thickness of HL had more influence on the sigmavM and sigmamax than TAG length. The peritubular dentin and its adjacent structures showed the highest sigmavM and sigmamax, mainly in the oblique loading.Faculdade De Odontologia De Bauru - USP2007-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572007000400015Journal of Applied Oral Science v.15 n.4 2007reponame:Journal of applied oral science (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/S1678-77572007000400015info:eu-repo/semantics/openAccessAnchieta,Rodolfo BrunieraRocha,Eduardo PassosKo,Ching-ChangSundfeld,Renato HermanMartin Junior,ManoelArchangelo,Carlos Marceloeng2007-11-06T00:00:00Zoai:scielo:S1678-77572007000400015Revistahttp://www.scielo.br/jaosPUBhttps://old.scielo.br/oai/scielo-oai.php||jaos@usp.br1678-77651678-7757opendoar:2007-11-06T00:00Journal of applied oral science (Online) - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Localized mechanics of dentin self-etching adhesive system |
title |
Localized mechanics of dentin self-etching adhesive system |
spellingShingle |
Localized mechanics of dentin self-etching adhesive system Anchieta,Rodolfo Bruniera Dentin-bonding agents Finite element analysis Dentin Dental acid etching |
title_short |
Localized mechanics of dentin self-etching adhesive system |
title_full |
Localized mechanics of dentin self-etching adhesive system |
title_fullStr |
Localized mechanics of dentin self-etching adhesive system |
title_full_unstemmed |
Localized mechanics of dentin self-etching adhesive system |
title_sort |
Localized mechanics of dentin self-etching adhesive system |
author |
Anchieta,Rodolfo Bruniera |
author_facet |
Anchieta,Rodolfo Bruniera Rocha,Eduardo Passos Ko,Ching-Chang Sundfeld,Renato Herman Martin Junior,Manoel Archangelo,Carlos Marcelo |
author_role |
author |
author2 |
Rocha,Eduardo Passos Ko,Ching-Chang Sundfeld,Renato Herman Martin Junior,Manoel Archangelo,Carlos Marcelo |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Anchieta,Rodolfo Bruniera Rocha,Eduardo Passos Ko,Ching-Chang Sundfeld,Renato Herman Martin Junior,Manoel Archangelo,Carlos Marcelo |
dc.subject.por.fl_str_mv |
Dentin-bonding agents Finite element analysis Dentin Dental acid etching |
topic |
Dentin-bonding agents Finite element analysis Dentin Dental acid etching |
description |
The bond strength of composite resins (CRs) to dentin is influenced by the interfacial microstructure of the hybrid layer (HL) and the resin tags (TAG). The contemporary self-etching primer adhesive systems overcame the inconvenient of the etch-and-rinse protocol. Studies, however, have demonstrated that HL thickness and TAG length vary according to the wetting time and additional use of acid-etching prior to self-etching primers. This study investigated the localized stress distribution in the HL and the dentin/adhesive interface. Two HL thicknesses (3 or 6 µm), two TAG lengths (13 or 17 µm) and two loading conditions (perpendicular and oblique-25º) were investigated by the finite element (FE) analysis. Five two-dimensional FE models (M) of a dentin specimen restored with CR (38 x 64 µm) were constructed: M1 - no HL and no TAG; M2 - 3 µm of HL and 13 µm of TAG; M3 - 3 µm of HL and 17 µm of TAG; M4 - 6 µm of HL and 13 µm of TAG; and M5 - 6 µm of HL and 17 µm of TAG. Two distributed loadings (L) (20N) were applied on CR surface: L1 - perpendicular, and L2 - oblique (25º). Fixed interfacial conditions were assigned on the border of the dentin specimen. Ansys 10.0 (Ansys®, Houston, PA, USA) software was used to calculate the stress fields. The peak of von Mises (sigmavM) and maximum principal stress (sigmamax) was higher in L2 than in L1. Microstructures (HL and TAG) had no effect on local stresses for L1. Decreasing HL decreased sigmavM and sigmamax in all structures for L2, but the TAG length had influence only on the peributular dentin. The thickness of HL had more influence on the sigmavM and sigmamax than TAG length. The peritubular dentin and its adjacent structures showed the highest sigmavM and sigmamax, mainly in the oblique loading. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572007000400015 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572007000400015 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1678-77572007000400015 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Faculdade De Odontologia De Bauru - USP |
publisher.none.fl_str_mv |
Faculdade De Odontologia De Bauru - USP |
dc.source.none.fl_str_mv |
Journal of Applied Oral Science v.15 n.4 2007 reponame:Journal of applied oral science (Online) instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Journal of applied oral science (Online) |
collection |
Journal of applied oral science (Online) |
repository.name.fl_str_mv |
Journal of applied oral science (Online) - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
||jaos@usp.br |
_version_ |
1748936434753994752 |