Human tooth germ stem cell response to calcium-silicate based endodontic cements

Detalhes bibliográficos
Autor(a) principal: Guven,Esra Pamukcu
Data de Publicação: 2013
Outros Autores: Yalvac,Mehmet Emir, Kayahan,Mehmet Baybora, Sunay,Hakk, SahIn,Fikrettin, Bayirli,Gunduz
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of applied oral science (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572013000400351
Resumo: OBJECTIVE: The aim of this study was to compare the cytotoxic effects of endodontic cements on human tooth germ stem cells (hTGSCs). MTA Fillapex, a mineral trioxide aggregate (MTA)-based, salicylate resin containing root canal sealer, was compared with iRoot SP, a bioceramic sealer, and AH Plus Jet, an epoxy resin-based root canal sealer. MATERIAL AND METHODS: To evaluate cytotoxicity, all materials were packed into Teflon rings (4 mmµ3 mm) and co-cultured with hTGSCs with the aid of 24-well Transwell permeable supports, which had a pore size of 0.4 µm. Coverslips were coated with MTA Fillapex, iRoot SP and AH Plus Jet and each coverslip was placed onto the bottom of one well of a six-well plate for scanning electron microscopy (SEM) analysis. Before the cytotoxicity and SEM analysis, all samples were stored at 37ºC and at 95% humidity and 5% CO2 for 24 hours to set. The cellular viability was analyzed using MTS test (3-(4,5-dimethyl-thiazol-2-yl)-5-(3-carboxy-methoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium). The cytotoxic effects and SEM visualization of the tested materials were analyzed at 24-hour, 72-hour, one-week and two-week periods. RESULTS: On the 1st day, only MTA Fillapex caused cytotoxicity compared to negative control (NC) group (p<0.008). No significant difference was observed between the other tested materials at this period (p>0.05). After 14 days of incubation with the test materials, MTA Fillapex exhibited significantly higher cytotoxicity compared with iRoot SP, AH Plus Jet and the NC group (P<0.008). In the SEM analysis, the highest levels of cell attachment were observed for iRoot SP and the control group. After 24 hours, MTA Fillapex reduced the number of cells attached to the surface. CONCLUSIONS: Within the limitations of this study, sealers exerted different cytotoxic effects on hTGSCs. Although all materials have exerted cellular toxicity, iRoot SP and AH Plus Jet may promote better attachment to hTGSCs.
id USP-17_a550859f776413e98c486bd2ea87060c
oai_identifier_str oai:scielo:S1678-77572013000400351
network_acronym_str USP-17
network_name_str Journal of applied oral science (Online)
repository_id_str
spelling Human tooth germ stem cell response to calcium-silicate based endodontic cementsStem cellsCytotoxicityScanning electron microscopyCalcium silicateEndodontics OBJECTIVE: The aim of this study was to compare the cytotoxic effects of endodontic cements on human tooth germ stem cells (hTGSCs). MTA Fillapex, a mineral trioxide aggregate (MTA)-based, salicylate resin containing root canal sealer, was compared with iRoot SP, a bioceramic sealer, and AH Plus Jet, an epoxy resin-based root canal sealer. MATERIAL AND METHODS: To evaluate cytotoxicity, all materials were packed into Teflon rings (4 mmµ3 mm) and co-cultured with hTGSCs with the aid of 24-well Transwell permeable supports, which had a pore size of 0.4 µm. Coverslips were coated with MTA Fillapex, iRoot SP and AH Plus Jet and each coverslip was placed onto the bottom of one well of a six-well plate for scanning electron microscopy (SEM) analysis. Before the cytotoxicity and SEM analysis, all samples were stored at 37ºC and at 95% humidity and 5% CO2 for 24 hours to set. The cellular viability was analyzed using MTS test (3-(4,5-dimethyl-thiazol-2-yl)-5-(3-carboxy-methoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium). The cytotoxic effects and SEM visualization of the tested materials were analyzed at 24-hour, 72-hour, one-week and two-week periods. RESULTS: On the 1st day, only MTA Fillapex caused cytotoxicity compared to negative control (NC) group (p<0.008). No significant difference was observed between the other tested materials at this period (p>0.05). After 14 days of incubation with the test materials, MTA Fillapex exhibited significantly higher cytotoxicity compared with iRoot SP, AH Plus Jet and the NC group (P<0.008). In the SEM analysis, the highest levels of cell attachment were observed for iRoot SP and the control group. After 24 hours, MTA Fillapex reduced the number of cells attached to the surface. CONCLUSIONS: Within the limitations of this study, sealers exerted different cytotoxic effects on hTGSCs. Although all materials have exerted cellular toxicity, iRoot SP and AH Plus Jet may promote better attachment to hTGSCs. Faculdade De Odontologia De Bauru - USP2013-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572013000400351Journal of Applied Oral Science v.21 n.4 2013reponame:Journal of applied oral science (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/1678-775720130047info:eu-repo/semantics/openAccessGuven,Esra PamukcuYalvac,Mehmet EmirKayahan,Mehmet BayboraSunay,HakkSahIn,FikrettinBayirli,Gunduzeng2013-10-10T00:00:00Zoai:scielo:S1678-77572013000400351Revistahttp://www.scielo.br/jaosPUBhttps://old.scielo.br/oai/scielo-oai.php||jaos@usp.br1678-77651678-7757opendoar:2013-10-10T00:00Journal of applied oral science (Online) - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Human tooth germ stem cell response to calcium-silicate based endodontic cements
title Human tooth germ stem cell response to calcium-silicate based endodontic cements
spellingShingle Human tooth germ stem cell response to calcium-silicate based endodontic cements
Guven,Esra Pamukcu
Stem cells
Cytotoxicity
Scanning electron microscopy
Calcium silicate
Endodontics
title_short Human tooth germ stem cell response to calcium-silicate based endodontic cements
title_full Human tooth germ stem cell response to calcium-silicate based endodontic cements
title_fullStr Human tooth germ stem cell response to calcium-silicate based endodontic cements
title_full_unstemmed Human tooth germ stem cell response to calcium-silicate based endodontic cements
title_sort Human tooth germ stem cell response to calcium-silicate based endodontic cements
author Guven,Esra Pamukcu
author_facet Guven,Esra Pamukcu
Yalvac,Mehmet Emir
Kayahan,Mehmet Baybora
Sunay,Hakk
SahIn,Fikrettin
Bayirli,Gunduz
author_role author
author2 Yalvac,Mehmet Emir
Kayahan,Mehmet Baybora
Sunay,Hakk
SahIn,Fikrettin
Bayirli,Gunduz
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Guven,Esra Pamukcu
Yalvac,Mehmet Emir
Kayahan,Mehmet Baybora
Sunay,Hakk
SahIn,Fikrettin
Bayirli,Gunduz
dc.subject.por.fl_str_mv Stem cells
Cytotoxicity
Scanning electron microscopy
Calcium silicate
Endodontics
topic Stem cells
Cytotoxicity
Scanning electron microscopy
Calcium silicate
Endodontics
description OBJECTIVE: The aim of this study was to compare the cytotoxic effects of endodontic cements on human tooth germ stem cells (hTGSCs). MTA Fillapex, a mineral trioxide aggregate (MTA)-based, salicylate resin containing root canal sealer, was compared with iRoot SP, a bioceramic sealer, and AH Plus Jet, an epoxy resin-based root canal sealer. MATERIAL AND METHODS: To evaluate cytotoxicity, all materials were packed into Teflon rings (4 mmµ3 mm) and co-cultured with hTGSCs with the aid of 24-well Transwell permeable supports, which had a pore size of 0.4 µm. Coverslips were coated with MTA Fillapex, iRoot SP and AH Plus Jet and each coverslip was placed onto the bottom of one well of a six-well plate for scanning electron microscopy (SEM) analysis. Before the cytotoxicity and SEM analysis, all samples were stored at 37ºC and at 95% humidity and 5% CO2 for 24 hours to set. The cellular viability was analyzed using MTS test (3-(4,5-dimethyl-thiazol-2-yl)-5-(3-carboxy-methoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium). The cytotoxic effects and SEM visualization of the tested materials were analyzed at 24-hour, 72-hour, one-week and two-week periods. RESULTS: On the 1st day, only MTA Fillapex caused cytotoxicity compared to negative control (NC) group (p<0.008). No significant difference was observed between the other tested materials at this period (p>0.05). After 14 days of incubation with the test materials, MTA Fillapex exhibited significantly higher cytotoxicity compared with iRoot SP, AH Plus Jet and the NC group (P<0.008). In the SEM analysis, the highest levels of cell attachment were observed for iRoot SP and the control group. After 24 hours, MTA Fillapex reduced the number of cells attached to the surface. CONCLUSIONS: Within the limitations of this study, sealers exerted different cytotoxic effects on hTGSCs. Although all materials have exerted cellular toxicity, iRoot SP and AH Plus Jet may promote better attachment to hTGSCs.
publishDate 2013
dc.date.none.fl_str_mv 2013-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572013000400351
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572013000400351
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1678-775720130047
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Faculdade De Odontologia De Bauru - USP
publisher.none.fl_str_mv Faculdade De Odontologia De Bauru - USP
dc.source.none.fl_str_mv Journal of Applied Oral Science v.21 n.4 2013
reponame:Journal of applied oral science (Online)
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Journal of applied oral science (Online)
collection Journal of applied oral science (Online)
repository.name.fl_str_mv Journal of applied oral science (Online) - Universidade de São Paulo (USP)
repository.mail.fl_str_mv ||jaos@usp.br
_version_ 1748936437644918784