Managing agricultural phosphorus to minimize water quality impacts
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Scientia Agrícola (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162016000100001 |
Resumo: | ABSTRACT Eutrophication of surface waters remains a major use-impairment in many countries, which, in fresh waters, is accelerated by phosphorus (P) inputs from both point (e.g., municipal waste water treatment plants) and nonpoint sources (e.g., urban and agricultural runoff). As point sources tend to be easier to identify and control, greater attention has recently focused on reducing nonpoint sources of P. In Brazil, agricultural productivity has increased tremendously over the last decade as a consequence, to a large extent, of increases in the use of fertilizer and improved land management. For instance, adoption of the “4R” approach (i.e., right rate, right time, right source, and right placement of P) to fertilizer management can decrease P runoff. Additionally, practices that lessen the risk of runoff and erosion, such as reduced tillage and cover crops will also lessen P runoff. Despite these measures P can still be released from soil and fluvial sediment stores as a result of the prior 10 to 20 years’ management. These legacy sources can mask the water quality benefits of present-day conservation efforts. Future remedial efforts should focus on developing risk assessment indices and nonpoint source models to identify and target conservation measures and to estimate their relative effectiveness. New fertilizer formulations may more closely tailor the timing of nutrient release to plant needs and potentially decrease P runoff. Even so, it must be remembered that appropriate and timely inputs of fertilizers are needed to maintain agricultural productivity and in some cases, financial support might also be required to help offset the costs of expensive conservation measures. |
id |
USP-18_9e9def84d74f056496afce143aba557a |
---|---|
oai_identifier_str |
oai:scielo:S0103-90162016000100001 |
network_acronym_str |
USP-18 |
network_name_str |
Scientia Agrícola (Online) |
repository_id_str |
|
spelling |
Managing agricultural phosphorus to minimize water quality impactsfertilizer managementconservation practicesrunofferosioneutrophicationABSTRACT Eutrophication of surface waters remains a major use-impairment in many countries, which, in fresh waters, is accelerated by phosphorus (P) inputs from both point (e.g., municipal waste water treatment plants) and nonpoint sources (e.g., urban and agricultural runoff). As point sources tend to be easier to identify and control, greater attention has recently focused on reducing nonpoint sources of P. In Brazil, agricultural productivity has increased tremendously over the last decade as a consequence, to a large extent, of increases in the use of fertilizer and improved land management. For instance, adoption of the “4R” approach (i.e., right rate, right time, right source, and right placement of P) to fertilizer management can decrease P runoff. Additionally, practices that lessen the risk of runoff and erosion, such as reduced tillage and cover crops will also lessen P runoff. Despite these measures P can still be released from soil and fluvial sediment stores as a result of the prior 10 to 20 years’ management. These legacy sources can mask the water quality benefits of present-day conservation efforts. Future remedial efforts should focus on developing risk assessment indices and nonpoint source models to identify and target conservation measures and to estimate their relative effectiveness. New fertilizer formulations may more closely tailor the timing of nutrient release to plant needs and potentially decrease P runoff. Even so, it must be remembered that appropriate and timely inputs of fertilizers are needed to maintain agricultural productivity and in some cases, financial support might also be required to help offset the costs of expensive conservation measures.Escola Superior de Agricultura "Luiz de Queiroz"2016-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162016000100001Scientia Agricola v.73 n.1 2016reponame:Scientia Agrícola (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/0103-9016-2015-0107info:eu-repo/semantics/openAccessSharpley,Andreweng2015-12-09T00:00:00Zoai:scielo:S0103-90162016000100001Revistahttp://revistas.usp.br/sa/indexPUBhttps://old.scielo.br/oai/scielo-oai.phpscientia@usp.br||alleoni@usp.br1678-992X0103-9016opendoar:2015-12-09T00:00Scientia Agrícola (Online) - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Managing agricultural phosphorus to minimize water quality impacts |
title |
Managing agricultural phosphorus to minimize water quality impacts |
spellingShingle |
Managing agricultural phosphorus to minimize water quality impacts Sharpley,Andrew fertilizer management conservation practices runoff erosion eutrophication |
title_short |
Managing agricultural phosphorus to minimize water quality impacts |
title_full |
Managing agricultural phosphorus to minimize water quality impacts |
title_fullStr |
Managing agricultural phosphorus to minimize water quality impacts |
title_full_unstemmed |
Managing agricultural phosphorus to minimize water quality impacts |
title_sort |
Managing agricultural phosphorus to minimize water quality impacts |
author |
Sharpley,Andrew |
author_facet |
Sharpley,Andrew |
author_role |
author |
dc.contributor.author.fl_str_mv |
Sharpley,Andrew |
dc.subject.por.fl_str_mv |
fertilizer management conservation practices runoff erosion eutrophication |
topic |
fertilizer management conservation practices runoff erosion eutrophication |
description |
ABSTRACT Eutrophication of surface waters remains a major use-impairment in many countries, which, in fresh waters, is accelerated by phosphorus (P) inputs from both point (e.g., municipal waste water treatment plants) and nonpoint sources (e.g., urban and agricultural runoff). As point sources tend to be easier to identify and control, greater attention has recently focused on reducing nonpoint sources of P. In Brazil, agricultural productivity has increased tremendously over the last decade as a consequence, to a large extent, of increases in the use of fertilizer and improved land management. For instance, adoption of the “4R” approach (i.e., right rate, right time, right source, and right placement of P) to fertilizer management can decrease P runoff. Additionally, practices that lessen the risk of runoff and erosion, such as reduced tillage and cover crops will also lessen P runoff. Despite these measures P can still be released from soil and fluvial sediment stores as a result of the prior 10 to 20 years’ management. These legacy sources can mask the water quality benefits of present-day conservation efforts. Future remedial efforts should focus on developing risk assessment indices and nonpoint source models to identify and target conservation measures and to estimate their relative effectiveness. New fertilizer formulations may more closely tailor the timing of nutrient release to plant needs and potentially decrease P runoff. Even so, it must be remembered that appropriate and timely inputs of fertilizers are needed to maintain agricultural productivity and in some cases, financial support might also be required to help offset the costs of expensive conservation measures. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162016000100001 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162016000100001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0103-9016-2015-0107 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Escola Superior de Agricultura "Luiz de Queiroz" |
publisher.none.fl_str_mv |
Escola Superior de Agricultura "Luiz de Queiroz" |
dc.source.none.fl_str_mv |
Scientia Agricola v.73 n.1 2016 reponame:Scientia Agrícola (Online) instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Scientia Agrícola (Online) |
collection |
Scientia Agrícola (Online) |
repository.name.fl_str_mv |
Scientia Agrícola (Online) - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
scientia@usp.br||alleoni@usp.br |
_version_ |
1748936463831007232 |