Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in Göldağ

Detalhes bibliográficos
Autor(a) principal: Ercanli,Ilker
Data de Publicação: 2015
Outros Autores: Gunlu,Alkan, Başkent,Emin Zeki
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Scientia Agrícola (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000300245
Resumo: Diameter at breast height (DBH) is the simplest, most common and most important tree dimension in forest inventory and is closely correlated with wood volume, height and biomass. In this study, a number of linear and nonlinear models predicting diameter at breast height from stump diameter were developed and evaluated for Oriental beech (Fagus orientalisLipsky) stands located in the forest region of Ayancık, in the northeast of Turkey. A set of 1,501 pairs of diameter at breast height-stump measurements, originating from 70 sample plots of even-aged Oriental beech stands, were used in this study. About 80 % of the otal data (1,160 trees in 55 sample plots) was used to fit a number of linear and nonlinear model parameters; the remaining 341 trees in 15 sample plots were randomly reserved for model validation and calibration response. The power model data set was found to produce the most satisfactory fits with the Adjusted Coefficient of Determination, R2adj (0.990), Root Mean Square Error, RMSE (1.25), Akaike’s Information Criterion, AIC (3820.5), Schwarz’s Bayesian Information Criterion, BIC (3837.2), and Absolute Bias (1.25). The nonlinear mixed-effect modeling approach for power model with R2adj(0.993), AIC (3598), BIC (3610.1), Absolute Bias (0.73) and RMSE (1.04) provided much better fitting and precise predictions for DBH from stump diameter than the conventional nonlinear fixed effect model structures for this model. The calibration response including tree DBH and stump diameter measurements of the four largest trees in a calibrated sample plot in calibration produced the highest Bias, -5.31 %, and RMSE, -6.30 %, the greatest reduction percentage.
id USP-18_b46cc0342044b196c8b5bb932558b3b0
oai_identifier_str oai:scielo:S0103-90162015000300245
network_acronym_str USP-18
network_name_str Scientia Agrícola (Online)
repository_id_str
spelling Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in GöldağDBHpredictionrandom parameterscalibrationDiameter at breast height (DBH) is the simplest, most common and most important tree dimension in forest inventory and is closely correlated with wood volume, height and biomass. In this study, a number of linear and nonlinear models predicting diameter at breast height from stump diameter were developed and evaluated for Oriental beech (Fagus orientalisLipsky) stands located in the forest region of Ayancık, in the northeast of Turkey. A set of 1,501 pairs of diameter at breast height-stump measurements, originating from 70 sample plots of even-aged Oriental beech stands, were used in this study. About 80 % of the otal data (1,160 trees in 55 sample plots) was used to fit a number of linear and nonlinear model parameters; the remaining 341 trees in 15 sample plots were randomly reserved for model validation and calibration response. The power model data set was found to produce the most satisfactory fits with the Adjusted Coefficient of Determination, R2adj (0.990), Root Mean Square Error, RMSE (1.25), Akaike’s Information Criterion, AIC (3820.5), Schwarz’s Bayesian Information Criterion, BIC (3837.2), and Absolute Bias (1.25). The nonlinear mixed-effect modeling approach for power model with R2adj(0.993), AIC (3598), BIC (3610.1), Absolute Bias (0.73) and RMSE (1.04) provided much better fitting and precise predictions for DBH from stump diameter than the conventional nonlinear fixed effect model structures for this model. The calibration response including tree DBH and stump diameter measurements of the four largest trees in a calibrated sample plot in calibration produced the highest Bias, -5.31 %, and RMSE, -6.30 %, the greatest reduction percentage.Escola Superior de Agricultura "Luiz de Queiroz"2015-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000300245Scientia Agricola v.72 n.3 2015reponame:Scientia Agrícola (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/0103-9016-2014-0225info:eu-repo/semantics/openAccessErcanli,IlkerGunlu,AlkanBaşkent,Emin Zekieng2015-04-15T00:00:00Zoai:scielo:S0103-90162015000300245Revistahttp://revistas.usp.br/sa/indexPUBhttps://old.scielo.br/oai/scielo-oai.phpscientia@usp.br||alleoni@usp.br1678-992X0103-9016opendoar:2015-04-15T00:00Scientia Agrícola (Online) - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in Göldağ
title Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in Göldağ
spellingShingle Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in Göldağ
Ercanli,Ilker
DBH
prediction
random parameters
calibration
title_short Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in Göldağ
title_full Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in Göldağ
title_fullStr Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in Göldağ
title_full_unstemmed Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in Göldağ
title_sort Mixed effect models for predicting breast height diameter from stump diameter of Oriental beech in Göldağ
author Ercanli,Ilker
author_facet Ercanli,Ilker
Gunlu,Alkan
Başkent,Emin Zeki
author_role author
author2 Gunlu,Alkan
Başkent,Emin Zeki
author2_role author
author
dc.contributor.author.fl_str_mv Ercanli,Ilker
Gunlu,Alkan
Başkent,Emin Zeki
dc.subject.por.fl_str_mv DBH
prediction
random parameters
calibration
topic DBH
prediction
random parameters
calibration
description Diameter at breast height (DBH) is the simplest, most common and most important tree dimension in forest inventory and is closely correlated with wood volume, height and biomass. In this study, a number of linear and nonlinear models predicting diameter at breast height from stump diameter were developed and evaluated for Oriental beech (Fagus orientalisLipsky) stands located in the forest region of Ayancık, in the northeast of Turkey. A set of 1,501 pairs of diameter at breast height-stump measurements, originating from 70 sample plots of even-aged Oriental beech stands, were used in this study. About 80 % of the otal data (1,160 trees in 55 sample plots) was used to fit a number of linear and nonlinear model parameters; the remaining 341 trees in 15 sample plots were randomly reserved for model validation and calibration response. The power model data set was found to produce the most satisfactory fits with the Adjusted Coefficient of Determination, R2adj (0.990), Root Mean Square Error, RMSE (1.25), Akaike’s Information Criterion, AIC (3820.5), Schwarz’s Bayesian Information Criterion, BIC (3837.2), and Absolute Bias (1.25). The nonlinear mixed-effect modeling approach for power model with R2adj(0.993), AIC (3598), BIC (3610.1), Absolute Bias (0.73) and RMSE (1.04) provided much better fitting and precise predictions for DBH from stump diameter than the conventional nonlinear fixed effect model structures for this model. The calibration response including tree DBH and stump diameter measurements of the four largest trees in a calibrated sample plot in calibration produced the highest Bias, -5.31 %, and RMSE, -6.30 %, the greatest reduction percentage.
publishDate 2015
dc.date.none.fl_str_mv 2015-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000300245
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162015000300245
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0103-9016-2014-0225
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Escola Superior de Agricultura "Luiz de Queiroz"
publisher.none.fl_str_mv Escola Superior de Agricultura "Luiz de Queiroz"
dc.source.none.fl_str_mv Scientia Agricola v.72 n.3 2015
reponame:Scientia Agrícola (Online)
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Scientia Agrícola (Online)
collection Scientia Agrícola (Online)
repository.name.fl_str_mv Scientia Agrícola (Online) - Universidade de São Paulo (USP)
repository.mail.fl_str_mv scientia@usp.br||alleoni@usp.br
_version_ 1748936463758655488