Sequential path analysis: what does "sequential" mean?
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Scientia Agrícola (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162014000600012 |
Resumo: | Studying relationships among plant and crop traits is crucial for crop scientists to understand complex biological systems that occur in plants and the field. Such knowledge constitutes the basis for more practical information on how to manage breeding and production to provide better or more suitable cultivars, higher yields, lower yield gaps, and resistance to pests etc. To acquire such knowledge, however, representative models of associations between plant and crop traits must be constructed. In path analysis - one of the major methods for analyzing multivariate relationships between quantitative traits - it is important to decide on an appropriate model for these associations, a model that is representative of the corresponding biological phenomena that are of interest to crop researchers. Adopting this "point of view", we asked various questions relating to such model building: (i) how should sequentiality in sequential path analysis be understood? (ii) how should it be interpreted? (iii) how should such sequential models be formulated? We discussed these issues in the context of crop science. Differences in simple and complex (sequential) models of path analysis are presented. Based on crop science examples, we show how important it is to correctly represent the biological relationships for a path analysis model. |
id |
USP-18_bf26aaa255075c007a6b773523f854b9 |
---|---|
oai_identifier_str |
oai:scielo:S0103-90162014000600012 |
network_acronym_str |
USP-18 |
network_name_str |
Scientia Agrícola (Online) |
repository_id_str |
|
spelling |
Sequential path analysis: what does "sequential" mean?interpretationrelationshipsmodelsstatisticsStudying relationships among plant and crop traits is crucial for crop scientists to understand complex biological systems that occur in plants and the field. Such knowledge constitutes the basis for more practical information on how to manage breeding and production to provide better or more suitable cultivars, higher yields, lower yield gaps, and resistance to pests etc. To acquire such knowledge, however, representative models of associations between plant and crop traits must be constructed. In path analysis - one of the major methods for analyzing multivariate relationships between quantitative traits - it is important to decide on an appropriate model for these associations, a model that is representative of the corresponding biological phenomena that are of interest to crop researchers. Adopting this "point of view", we asked various questions relating to such model building: (i) how should sequentiality in sequential path analysis be understood? (ii) how should it be interpreted? (iii) how should such sequential models be formulated? We discussed these issues in the context of crop science. Differences in simple and complex (sequential) models of path analysis are presented. Based on crop science examples, we show how important it is to correctly represent the biological relationships for a path analysis model.Escola Superior de Agricultura "Luiz de Queiroz"2014-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162014000600012Scientia Agricola v.71 n.6 2014reponame:Scientia Agrícola (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/0103-9016-2014-0186info:eu-repo/semantics/openAccessKozak,MarcinAzevedo,Ricardo Antuneseng2014-12-15T00:00:00Zoai:scielo:S0103-90162014000600012Revistahttp://revistas.usp.br/sa/indexPUBhttps://old.scielo.br/oai/scielo-oai.phpscientia@usp.br||alleoni@usp.br1678-992X0103-9016opendoar:2014-12-15T00:00Scientia Agrícola (Online) - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Sequential path analysis: what does "sequential" mean? |
title |
Sequential path analysis: what does "sequential" mean? |
spellingShingle |
Sequential path analysis: what does "sequential" mean? Kozak,Marcin interpretation relationships models statistics |
title_short |
Sequential path analysis: what does "sequential" mean? |
title_full |
Sequential path analysis: what does "sequential" mean? |
title_fullStr |
Sequential path analysis: what does "sequential" mean? |
title_full_unstemmed |
Sequential path analysis: what does "sequential" mean? |
title_sort |
Sequential path analysis: what does "sequential" mean? |
author |
Kozak,Marcin |
author_facet |
Kozak,Marcin Azevedo,Ricardo Antunes |
author_role |
author |
author2 |
Azevedo,Ricardo Antunes |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Kozak,Marcin Azevedo,Ricardo Antunes |
dc.subject.por.fl_str_mv |
interpretation relationships models statistics |
topic |
interpretation relationships models statistics |
description |
Studying relationships among plant and crop traits is crucial for crop scientists to understand complex biological systems that occur in plants and the field. Such knowledge constitutes the basis for more practical information on how to manage breeding and production to provide better or more suitable cultivars, higher yields, lower yield gaps, and resistance to pests etc. To acquire such knowledge, however, representative models of associations between plant and crop traits must be constructed. In path analysis - one of the major methods for analyzing multivariate relationships between quantitative traits - it is important to decide on an appropriate model for these associations, a model that is representative of the corresponding biological phenomena that are of interest to crop researchers. Adopting this "point of view", we asked various questions relating to such model building: (i) how should sequentiality in sequential path analysis be understood? (ii) how should it be interpreted? (iii) how should such sequential models be formulated? We discussed these issues in the context of crop science. Differences in simple and complex (sequential) models of path analysis are presented. Based on crop science examples, we show how important it is to correctly represent the biological relationships for a path analysis model. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162014000600012 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162014000600012 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0103-9016-2014-0186 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Escola Superior de Agricultura "Luiz de Queiroz" |
publisher.none.fl_str_mv |
Escola Superior de Agricultura "Luiz de Queiroz" |
dc.source.none.fl_str_mv |
Scientia Agricola v.71 n.6 2014 reponame:Scientia Agrícola (Online) instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Scientia Agrícola (Online) |
collection |
Scientia Agrícola (Online) |
repository.name.fl_str_mv |
Scientia Agrícola (Online) - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
scientia@usp.br||alleoni@usp.br |
_version_ |
1748936463412625408 |