Nitrogen fixation and growth response of Alnus Rubra following fertiliztion with urea or biosolids

Detalhes bibliográficos
Autor(a) principal: Gaulke,Linda S.
Data de Publicação: 2006
Outros Autores: Henry,Charles L., Brown,Sally L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Scientia Agrícola (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162006000400007
Resumo: Nitrogen fertilization of forests using biosolids offers a potentially environmentally friendly means to accelerate tree growth. This field study was designed to analyze the effects of nitrogen fertilization on the symbiotic, nitrogen (N)-fixing relationship between Alnus rubra Bong. (red alder) and Frankia. Anaerobically digested, class B biosolids and synthetic urea (46% N) were applied at rates of 140, 280 and 560 kg ha-1 available N to a well-drained, sandy, glacial outwash soil in the Indianola series (mixed, mesic Dystric Xeropsamments). Plots were planted with A. rubra seedlings. At the end of each of two growing seasons trees were harvested and analyzed for the rate of N fixation (as acetylene reduction activity), biomass and foliar N. At year 1, there was no N fixation for trees grown with urea amendments, but control (17 µmol C2H4 g-1 hr-1) and biosolids (26-45 µmol C2H4 g-1 hr-1) trees were fixing N. At the end of year 2, all trees in all treatments were fixing N (7 µmol C2H4 g-1 hr-1, 4-16 µmol C2H4 g-1 hr-1, and 20-29 µmol C2H4 g-1 hr-1 for control, urea and biosolids respectively). Trees grown with biosolids amendments were larger overall (year 1 shoot biomass 10 g, 5 g, and 23 g for control, urea, and biosolids respectively, year 2 shoot biomass 50 g, 51 g, and 190 g for control, urea, and biosolids respectively) with higher concentrations of foliar N for both years of the study (year 1 foliar N 26 g kg-1, 27 g kg-1, and 40 g kg-1 for control, urea, and biosolids respectively, year 2 foliar N 17 g kg-1, 19 g kg-1, and 23 g kg-1 for control, urea, and biosolids respectively). Trees grown with urea amendments appeared to use the urea N over Frankia supplied N, whereas the biosolids trees appeared to be able to use both N in biosolids and N from Frankia. The results from this study indicated that the greater growth of A. rubra may have been responsible for the observed higher N demand. Biosolids may have supplied other nutrients to the trees to support this accelerated growth.
id USP-18_c7f5b354d19ab80249f3c6468fa71f72
oai_identifier_str oai:scielo:S0103-90162006000400007
network_acronym_str USP-18
network_name_str Scientia Agrícola (Online)
repository_id_str
spelling Nitrogen fixation and growth response of Alnus Rubra following fertiliztion with urea or biosolidsFrankiaacetylene reduction activity (ARA)Nitrogen fertilization of forests using biosolids offers a potentially environmentally friendly means to accelerate tree growth. This field study was designed to analyze the effects of nitrogen fertilization on the symbiotic, nitrogen (N)-fixing relationship between Alnus rubra Bong. (red alder) and Frankia. Anaerobically digested, class B biosolids and synthetic urea (46% N) were applied at rates of 140, 280 and 560 kg ha-1 available N to a well-drained, sandy, glacial outwash soil in the Indianola series (mixed, mesic Dystric Xeropsamments). Plots were planted with A. rubra seedlings. At the end of each of two growing seasons trees were harvested and analyzed for the rate of N fixation (as acetylene reduction activity), biomass and foliar N. At year 1, there was no N fixation for trees grown with urea amendments, but control (17 µmol C2H4 g-1 hr-1) and biosolids (26-45 µmol C2H4 g-1 hr-1) trees were fixing N. At the end of year 2, all trees in all treatments were fixing N (7 µmol C2H4 g-1 hr-1, 4-16 µmol C2H4 g-1 hr-1, and 20-29 µmol C2H4 g-1 hr-1 for control, urea and biosolids respectively). Trees grown with biosolids amendments were larger overall (year 1 shoot biomass 10 g, 5 g, and 23 g for control, urea, and biosolids respectively, year 2 shoot biomass 50 g, 51 g, and 190 g for control, urea, and biosolids respectively) with higher concentrations of foliar N for both years of the study (year 1 foliar N 26 g kg-1, 27 g kg-1, and 40 g kg-1 for control, urea, and biosolids respectively, year 2 foliar N 17 g kg-1, 19 g kg-1, and 23 g kg-1 for control, urea, and biosolids respectively). Trees grown with urea amendments appeared to use the urea N over Frankia supplied N, whereas the biosolids trees appeared to be able to use both N in biosolids and N from Frankia. The results from this study indicated that the greater growth of A. rubra may have been responsible for the observed higher N demand. Biosolids may have supplied other nutrients to the trees to support this accelerated growth.Escola Superior de Agricultura "Luiz de Queiroz"2006-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162006000400007Scientia Agricola v.63 n.4 2006reponame:Scientia Agrícola (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/S0103-90162006000400007info:eu-repo/semantics/openAccessGaulke,Linda S.Henry,Charles L.Brown,Sally L.eng2007-08-20T00:00:00Zoai:scielo:S0103-90162006000400007Revistahttp://revistas.usp.br/sa/indexPUBhttps://old.scielo.br/oai/scielo-oai.phpscientia@usp.br||alleoni@usp.br1678-992X0103-9016opendoar:2007-08-20T00:00Scientia Agrícola (Online) - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Nitrogen fixation and growth response of Alnus Rubra following fertiliztion with urea or biosolids
title Nitrogen fixation and growth response of Alnus Rubra following fertiliztion with urea or biosolids
spellingShingle Nitrogen fixation and growth response of Alnus Rubra following fertiliztion with urea or biosolids
Gaulke,Linda S.
Frankia
acetylene reduction activity (ARA)
title_short Nitrogen fixation and growth response of Alnus Rubra following fertiliztion with urea or biosolids
title_full Nitrogen fixation and growth response of Alnus Rubra following fertiliztion with urea or biosolids
title_fullStr Nitrogen fixation and growth response of Alnus Rubra following fertiliztion with urea or biosolids
title_full_unstemmed Nitrogen fixation and growth response of Alnus Rubra following fertiliztion with urea or biosolids
title_sort Nitrogen fixation and growth response of Alnus Rubra following fertiliztion with urea or biosolids
author Gaulke,Linda S.
author_facet Gaulke,Linda S.
Henry,Charles L.
Brown,Sally L.
author_role author
author2 Henry,Charles L.
Brown,Sally L.
author2_role author
author
dc.contributor.author.fl_str_mv Gaulke,Linda S.
Henry,Charles L.
Brown,Sally L.
dc.subject.por.fl_str_mv Frankia
acetylene reduction activity (ARA)
topic Frankia
acetylene reduction activity (ARA)
description Nitrogen fertilization of forests using biosolids offers a potentially environmentally friendly means to accelerate tree growth. This field study was designed to analyze the effects of nitrogen fertilization on the symbiotic, nitrogen (N)-fixing relationship between Alnus rubra Bong. (red alder) and Frankia. Anaerobically digested, class B biosolids and synthetic urea (46% N) were applied at rates of 140, 280 and 560 kg ha-1 available N to a well-drained, sandy, glacial outwash soil in the Indianola series (mixed, mesic Dystric Xeropsamments). Plots were planted with A. rubra seedlings. At the end of each of two growing seasons trees were harvested and analyzed for the rate of N fixation (as acetylene reduction activity), biomass and foliar N. At year 1, there was no N fixation for trees grown with urea amendments, but control (17 µmol C2H4 g-1 hr-1) and biosolids (26-45 µmol C2H4 g-1 hr-1) trees were fixing N. At the end of year 2, all trees in all treatments were fixing N (7 µmol C2H4 g-1 hr-1, 4-16 µmol C2H4 g-1 hr-1, and 20-29 µmol C2H4 g-1 hr-1 for control, urea and biosolids respectively). Trees grown with biosolids amendments were larger overall (year 1 shoot biomass 10 g, 5 g, and 23 g for control, urea, and biosolids respectively, year 2 shoot biomass 50 g, 51 g, and 190 g for control, urea, and biosolids respectively) with higher concentrations of foliar N for both years of the study (year 1 foliar N 26 g kg-1, 27 g kg-1, and 40 g kg-1 for control, urea, and biosolids respectively, year 2 foliar N 17 g kg-1, 19 g kg-1, and 23 g kg-1 for control, urea, and biosolids respectively). Trees grown with urea amendments appeared to use the urea N over Frankia supplied N, whereas the biosolids trees appeared to be able to use both N in biosolids and N from Frankia. The results from this study indicated that the greater growth of A. rubra may have been responsible for the observed higher N demand. Biosolids may have supplied other nutrients to the trees to support this accelerated growth.
publishDate 2006
dc.date.none.fl_str_mv 2006-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162006000400007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162006000400007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-90162006000400007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Escola Superior de Agricultura "Luiz de Queiroz"
publisher.none.fl_str_mv Escola Superior de Agricultura "Luiz de Queiroz"
dc.source.none.fl_str_mv Scientia Agricola v.63 n.4 2006
reponame:Scientia Agrícola (Online)
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Scientia Agrícola (Online)
collection Scientia Agrícola (Online)
repository.name.fl_str_mv Scientia Agrícola (Online) - Universidade de São Paulo (USP)
repository.mail.fl_str_mv scientia@usp.br||alleoni@usp.br
_version_ 1748936460153651200