Determinants of the birth of companies in Rio Grande do Sul: a spatial panel data model, 2007-2013
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Economia Aplicada |
Texto Completo: | https://www.revistas.usp.br/ecoa/article/view/142259 |
Resumo: | The objective of this paper is to analyze the birth of companies in the cities of Rio Grande do Sul State between 2007 and 2013. For that, exploratory analysis of spatial data and the panel data regression were used. The results indicated the existence of spatial autocorrelation of the birth of companies and the formation of some clusters of the counties with high births of companies. The spatial autoregression (SAR) model showed the spillover effect of the birth of companies and made it possible to measure the direct and indirect impacts of the independent variables on the birth of companies. |
id |
USP-21_f9fa49aa441b614148775526653851d6 |
---|---|
oai_identifier_str |
oai:revistas.usp.br:article/142259 |
network_acronym_str |
USP-21 |
network_name_str |
Economia Aplicada |
repository_id_str |
|
spelling |
Determinants of the birth of companies in Rio Grande do Sul: a spatial panel data model, 2007-2013Determinantes do nascimento de empresas no Rio Grande do Sul: um modelo de dados em painel espacial, 2007-2013nascimento de empresastransbordamento espacialpainel espacialbirth of companiesspatial spilloverspatial panelThe objective of this paper is to analyze the birth of companies in the cities of Rio Grande do Sul State between 2007 and 2013. For that, exploratory analysis of spatial data and the panel data regression were used. The results indicated the existence of spatial autocorrelation of the birth of companies and the formation of some clusters of the counties with high births of companies. The spatial autoregression (SAR) model showed the spillover effect of the birth of companies and made it possible to measure the direct and indirect impacts of the independent variables on the birth of companies.O objetivo deste artigo é analisar o nascimento de empresas nos municípios do Rio Grande do Sul no período entre 2007 e 2013. Para isso, utilizam-se procedimentos da análise exploratória de dados espaciais e regressão em painel espacial. Os resultados indicaram a existência de autocorrelação espacial do nascimento de empresas e a formação de alguns clusters de municípios com altos nascimentos de empresas. O modelo de autorregressão espacial (SAR) evidenciou o efeito transbordamento do nascimento de empresas e possibilitou a mensuração dos impactos diretos e indiretos das variáveis independentes sobre o nascimento de empresas.Universidade de São Paulo, FEA-RP/USP2019-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistas.usp.br/ecoa/article/view/14225910.11606/1980-5330/ea142259Economia Aplicada; Vol. 23 No. 2 (2019); 71-98Economia Aplicada; Vol. 23 Núm. 2 (2019); 71-98Economia Aplicada; v. 23 n. 2 (2019); 71-981980-53301413-8050reponame:Economia Aplicadainstname:Universidade de São Paulo (USP)instacron:USPporhttps://www.revistas.usp.br/ecoa/article/view/142259/161032Copyright (c) 2019 Economia Aplicadainfo:eu-repo/semantics/openAccessCéspedes, Carlos Hernán RodasFochezatto, Adelar2020-08-04T15:57:16Zoai:revistas.usp.br:article/142259Revistahttps://www.revistas.usp.br/ecoaPUBhttps://www.revistas.usp.br/ecoa/oai||revecap@usp.br1980-53301413-8050opendoar:2023-09-13T12:17:10.268711Economia Aplicada - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Determinants of the birth of companies in Rio Grande do Sul: a spatial panel data model, 2007-2013 Determinantes do nascimento de empresas no Rio Grande do Sul: um modelo de dados em painel espacial, 2007-2013 |
title |
Determinants of the birth of companies in Rio Grande do Sul: a spatial panel data model, 2007-2013 |
spellingShingle |
Determinants of the birth of companies in Rio Grande do Sul: a spatial panel data model, 2007-2013 Céspedes, Carlos Hernán Rodas nascimento de empresas transbordamento espacial painel espacial birth of companies spatial spillover spatial panel |
title_short |
Determinants of the birth of companies in Rio Grande do Sul: a spatial panel data model, 2007-2013 |
title_full |
Determinants of the birth of companies in Rio Grande do Sul: a spatial panel data model, 2007-2013 |
title_fullStr |
Determinants of the birth of companies in Rio Grande do Sul: a spatial panel data model, 2007-2013 |
title_full_unstemmed |
Determinants of the birth of companies in Rio Grande do Sul: a spatial panel data model, 2007-2013 |
title_sort |
Determinants of the birth of companies in Rio Grande do Sul: a spatial panel data model, 2007-2013 |
author |
Céspedes, Carlos Hernán Rodas |
author_facet |
Céspedes, Carlos Hernán Rodas Fochezatto, Adelar |
author_role |
author |
author2 |
Fochezatto, Adelar |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Céspedes, Carlos Hernán Rodas Fochezatto, Adelar |
dc.subject.por.fl_str_mv |
nascimento de empresas transbordamento espacial painel espacial birth of companies spatial spillover spatial panel |
topic |
nascimento de empresas transbordamento espacial painel espacial birth of companies spatial spillover spatial panel |
description |
The objective of this paper is to analyze the birth of companies in the cities of Rio Grande do Sul State between 2007 and 2013. For that, exploratory analysis of spatial data and the panel data regression were used. The results indicated the existence of spatial autocorrelation of the birth of companies and the formation of some clusters of the counties with high births of companies. The spatial autoregression (SAR) model showed the spillover effect of the birth of companies and made it possible to measure the direct and indirect impacts of the independent variables on the birth of companies. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistas.usp.br/ecoa/article/view/142259 10.11606/1980-5330/ea142259 |
url |
https://www.revistas.usp.br/ecoa/article/view/142259 |
identifier_str_mv |
10.11606/1980-5330/ea142259 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.revistas.usp.br/ecoa/article/view/142259/161032 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2019 Economia Aplicada info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2019 Economia Aplicada |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de São Paulo, FEA-RP/USP |
publisher.none.fl_str_mv |
Universidade de São Paulo, FEA-RP/USP |
dc.source.none.fl_str_mv |
Economia Aplicada; Vol. 23 No. 2 (2019); 71-98 Economia Aplicada; Vol. 23 Núm. 2 (2019); 71-98 Economia Aplicada; v. 23 n. 2 (2019); 71-98 1980-5330 1413-8050 reponame:Economia Aplicada instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Economia Aplicada |
collection |
Economia Aplicada |
repository.name.fl_str_mv |
Economia Aplicada - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
||revecap@usp.br |
_version_ |
1800221695657639936 |