Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology

Detalhes bibliográficos
Autor(a) principal: Czeresnia, Dina
Data de Publicação: 1995
Outros Autores: Albuquerque, Maria de Fátima Militão de
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Saúde Pública
Texto Completo: https://www.revistas.usp.br/rsp/article/view/24143
Resumo: The foundations on which the concept of risk has been constructed are discussed. A description of Rubin's model of causal inference, which was first developed in the domain of applied statistics, and later incorporated into a branch of epidemiology, is taken as the starting point. Analysis of the premisses of causal inference brings to light the logical stages in the construction of the concept of risk, allowing it to be understood "from the inside". The abovementioned branch of statistics and epidemiology seeks to demonstrate that statistics can infer causality instead of simply revealing statistical associations; the model gives the basis for estimating that which way be defined as the effect of a cause. Using this procedural distinction between causal inference and association, the model also seeks to differentiate between the epidemiologial dimension of concepts and the merely statiscal dimension. This leads to greater complexity when handing the concepts of interation and coofounding. The redective aspects inherent in this methodological construction of risk are here high lighted. Thus, whether applied to individual or populational inferences, this methodological construction imposes limits that need to be taken into account in its theoretical and pratical application to epidemiology.
id USP-23_797090e95f84ee86f6a5fc270c11df60
oai_identifier_str oai:revistas.usp.br:article/24143
network_acronym_str USP-23
network_name_str Revista de Saúde Pública
repository_id_str
spelling Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology Modelos de inferência causal: análise crítica da utilização da estatística na epidemiologia RiscoInferênciaCausalidadeModelos de risco proporcionaisRiskInferenceCausalityProportional hazards models The foundations on which the concept of risk has been constructed are discussed. A description of Rubin's model of causal inference, which was first developed in the domain of applied statistics, and later incorporated into a branch of epidemiology, is taken as the starting point. Analysis of the premisses of causal inference brings to light the logical stages in the construction of the concept of risk, allowing it to be understood "from the inside". The abovementioned branch of statistics and epidemiology seeks to demonstrate that statistics can infer causality instead of simply revealing statistical associations; the model gives the basis for estimating that which way be defined as the effect of a cause. Using this procedural distinction between causal inference and association, the model also seeks to differentiate between the epidemiologial dimension of concepts and the merely statiscal dimension. This leads to greater complexity when handing the concepts of interation and coofounding. The redective aspects inherent in this methodological construction of risk are here high lighted. Thus, whether applied to individual or populational inferences, this methodological construction imposes limits that need to be taken into account in its theoretical and pratical application to epidemiology. Discute-se a base de construção do conceito de risco, a partir da descrição do modelo de inferência causal de Rubin, desenvolvido no âmbito da estatística aplicada, e incorporado por uma vertente da epidemiologia. A apresentação das premissas da inferência causal torna visível as passagens lógicas assumidas na construção do conceito de risco, permitindo entendê-lo "por dentro". Esta vertente tenta demonstrar que a estatística é capaz de inferir causalidade ao invés de simplesmente evidenciar associações estatísticas, estimando em um modelo o que é definido como o efeito de uma causa. A partir desta distinção entre procedimentos de inferência causal e de associação, busca-se distinguir também o que seria a dimensão epidemiológica dos conceitos, em contrapartida a uma dimensão simplesmente estatística. Nesse contexto, a abordagem dos conceitos de interação e confusão toma-se mais complexa. Busca-se apontar as reduções que se operam nas passagens da construção metodológica do risco. Tanto no contexto de inferências individuais, quanto populacionais, esta construção metodológica impõe limites que precisam ser considerados nas aplicações teóricas e práticas da epidemiologia. Universidade de São Paulo. Faculdade de Saúde Pública1995-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistas.usp.br/rsp/article/view/2414310.1590/S0034-89101995000500012Revista de Saúde Pública; Vol. 29 No. 5 (1995); 415-423 Revista de Saúde Pública; Vol. 29 Núm. 5 (1995); 415-423 Revista de Saúde Pública; v. 29 n. 5 (1995); 415-423 1518-87870034-8910reponame:Revista de Saúde Públicainstname:Universidade de São Paulo (USP)instacron:USPporhttps://www.revistas.usp.br/rsp/article/view/24143/26108Copyright (c) 2017 Revista de Saúde Públicainfo:eu-repo/semantics/openAccessCzeresnia, DinaAlbuquerque, Maria de Fátima Militão de2012-05-29T16:30:41Zoai:revistas.usp.br:article/24143Revistahttps://www.revistas.usp.br/rsp/indexONGhttps://www.revistas.usp.br/rsp/oairevsp@org.usp.br||revsp1@usp.br1518-87870034-8910opendoar:2012-05-29T16:30:41Revista de Saúde Pública - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology
Modelos de inferência causal: análise crítica da utilização da estatística na epidemiologia
title Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology
spellingShingle Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology
Czeresnia, Dina
Risco
Inferência
Causalidade
Modelos de risco proporcionais
Risk
Inference
Causality
Proportional hazards models
title_short Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology
title_full Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology
title_fullStr Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology
title_full_unstemmed Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology
title_sort Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology
author Czeresnia, Dina
author_facet Czeresnia, Dina
Albuquerque, Maria de Fátima Militão de
author_role author
author2 Albuquerque, Maria de Fátima Militão de
author2_role author
dc.contributor.author.fl_str_mv Czeresnia, Dina
Albuquerque, Maria de Fátima Militão de
dc.subject.por.fl_str_mv Risco
Inferência
Causalidade
Modelos de risco proporcionais
Risk
Inference
Causality
Proportional hazards models
topic Risco
Inferência
Causalidade
Modelos de risco proporcionais
Risk
Inference
Causality
Proportional hazards models
description The foundations on which the concept of risk has been constructed are discussed. A description of Rubin's model of causal inference, which was first developed in the domain of applied statistics, and later incorporated into a branch of epidemiology, is taken as the starting point. Analysis of the premisses of causal inference brings to light the logical stages in the construction of the concept of risk, allowing it to be understood "from the inside". The abovementioned branch of statistics and epidemiology seeks to demonstrate that statistics can infer causality instead of simply revealing statistical associations; the model gives the basis for estimating that which way be defined as the effect of a cause. Using this procedural distinction between causal inference and association, the model also seeks to differentiate between the epidemiologial dimension of concepts and the merely statiscal dimension. This leads to greater complexity when handing the concepts of interation and coofounding. The redective aspects inherent in this methodological construction of risk are here high lighted. Thus, whether applied to individual or populational inferences, this methodological construction imposes limits that need to be taken into account in its theoretical and pratical application to epidemiology.
publishDate 1995
dc.date.none.fl_str_mv 1995-10-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.revistas.usp.br/rsp/article/view/24143
10.1590/S0034-89101995000500012
url https://www.revistas.usp.br/rsp/article/view/24143
identifier_str_mv 10.1590/S0034-89101995000500012
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://www.revistas.usp.br/rsp/article/view/24143/26108
dc.rights.driver.fl_str_mv Copyright (c) 2017 Revista de Saúde Pública
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2017 Revista de Saúde Pública
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de São Paulo. Faculdade de Saúde Pública
publisher.none.fl_str_mv Universidade de São Paulo. Faculdade de Saúde Pública
dc.source.none.fl_str_mv Revista de Saúde Pública; Vol. 29 No. 5 (1995); 415-423
Revista de Saúde Pública; Vol. 29 Núm. 5 (1995); 415-423
Revista de Saúde Pública; v. 29 n. 5 (1995); 415-423
1518-8787
0034-8910
reponame:Revista de Saúde Pública
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Revista de Saúde Pública
collection Revista de Saúde Pública
repository.name.fl_str_mv Revista de Saúde Pública - Universidade de São Paulo (USP)
repository.mail.fl_str_mv revsp@org.usp.br||revsp1@usp.br
_version_ 1800221777674108928