Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology
Autor(a) principal: | |
---|---|
Data de Publicação: | 1995 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Saúde Pública |
Texto Completo: | https://www.revistas.usp.br/rsp/article/view/24143 |
Resumo: | The foundations on which the concept of risk has been constructed are discussed. A description of Rubin's model of causal inference, which was first developed in the domain of applied statistics, and later incorporated into a branch of epidemiology, is taken as the starting point. Analysis of the premisses of causal inference brings to light the logical stages in the construction of the concept of risk, allowing it to be understood "from the inside". The abovementioned branch of statistics and epidemiology seeks to demonstrate that statistics can infer causality instead of simply revealing statistical associations; the model gives the basis for estimating that which way be defined as the effect of a cause. Using this procedural distinction between causal inference and association, the model also seeks to differentiate between the epidemiologial dimension of concepts and the merely statiscal dimension. This leads to greater complexity when handing the concepts of interation and coofounding. The redective aspects inherent in this methodological construction of risk are here high lighted. Thus, whether applied to individual or populational inferences, this methodological construction imposes limits that need to be taken into account in its theoretical and pratical application to epidemiology. |
id |
USP-23_797090e95f84ee86f6a5fc270c11df60 |
---|---|
oai_identifier_str |
oai:revistas.usp.br:article/24143 |
network_acronym_str |
USP-23 |
network_name_str |
Revista de Saúde Pública |
repository_id_str |
|
spelling |
Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology Modelos de inferência causal: análise crítica da utilização da estatística na epidemiologia RiscoInferênciaCausalidadeModelos de risco proporcionaisRiskInferenceCausalityProportional hazards models The foundations on which the concept of risk has been constructed are discussed. A description of Rubin's model of causal inference, which was first developed in the domain of applied statistics, and later incorporated into a branch of epidemiology, is taken as the starting point. Analysis of the premisses of causal inference brings to light the logical stages in the construction of the concept of risk, allowing it to be understood "from the inside". The abovementioned branch of statistics and epidemiology seeks to demonstrate that statistics can infer causality instead of simply revealing statistical associations; the model gives the basis for estimating that which way be defined as the effect of a cause. Using this procedural distinction between causal inference and association, the model also seeks to differentiate between the epidemiologial dimension of concepts and the merely statiscal dimension. This leads to greater complexity when handing the concepts of interation and coofounding. The redective aspects inherent in this methodological construction of risk are here high lighted. Thus, whether applied to individual or populational inferences, this methodological construction imposes limits that need to be taken into account in its theoretical and pratical application to epidemiology. Discute-se a base de construção do conceito de risco, a partir da descrição do modelo de inferência causal de Rubin, desenvolvido no âmbito da estatística aplicada, e incorporado por uma vertente da epidemiologia. A apresentação das premissas da inferência causal torna visível as passagens lógicas assumidas na construção do conceito de risco, permitindo entendê-lo "por dentro". Esta vertente tenta demonstrar que a estatística é capaz de inferir causalidade ao invés de simplesmente evidenciar associações estatísticas, estimando em um modelo o que é definido como o efeito de uma causa. A partir desta distinção entre procedimentos de inferência causal e de associação, busca-se distinguir também o que seria a dimensão epidemiológica dos conceitos, em contrapartida a uma dimensão simplesmente estatística. Nesse contexto, a abordagem dos conceitos de interação e confusão toma-se mais complexa. Busca-se apontar as reduções que se operam nas passagens da construção metodológica do risco. Tanto no contexto de inferências individuais, quanto populacionais, esta construção metodológica impõe limites que precisam ser considerados nas aplicações teóricas e práticas da epidemiologia. Universidade de São Paulo. Faculdade de Saúde Pública1995-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistas.usp.br/rsp/article/view/2414310.1590/S0034-89101995000500012Revista de Saúde Pública; Vol. 29 No. 5 (1995); 415-423 Revista de Saúde Pública; Vol. 29 Núm. 5 (1995); 415-423 Revista de Saúde Pública; v. 29 n. 5 (1995); 415-423 1518-87870034-8910reponame:Revista de Saúde Públicainstname:Universidade de São Paulo (USP)instacron:USPporhttps://www.revistas.usp.br/rsp/article/view/24143/26108Copyright (c) 2017 Revista de Saúde Públicainfo:eu-repo/semantics/openAccessCzeresnia, DinaAlbuquerque, Maria de Fátima Militão de2012-05-29T16:30:41Zoai:revistas.usp.br:article/24143Revistahttps://www.revistas.usp.br/rsp/indexONGhttps://www.revistas.usp.br/rsp/oairevsp@org.usp.br||revsp1@usp.br1518-87870034-8910opendoar:2012-05-29T16:30:41Revista de Saúde Pública - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology Modelos de inferência causal: análise crítica da utilização da estatística na epidemiologia |
title |
Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology |
spellingShingle |
Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology Czeresnia, Dina Risco Inferência Causalidade Modelos de risco proporcionais Risk Inference Causality Proportional hazards models |
title_short |
Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology |
title_full |
Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology |
title_fullStr |
Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology |
title_full_unstemmed |
Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology |
title_sort |
Models of causal inference: advances in and the obstacles to the growing use of statistics in epidemiology |
author |
Czeresnia, Dina |
author_facet |
Czeresnia, Dina Albuquerque, Maria de Fátima Militão de |
author_role |
author |
author2 |
Albuquerque, Maria de Fátima Militão de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Czeresnia, Dina Albuquerque, Maria de Fátima Militão de |
dc.subject.por.fl_str_mv |
Risco Inferência Causalidade Modelos de risco proporcionais Risk Inference Causality Proportional hazards models |
topic |
Risco Inferência Causalidade Modelos de risco proporcionais Risk Inference Causality Proportional hazards models |
description |
The foundations on which the concept of risk has been constructed are discussed. A description of Rubin's model of causal inference, which was first developed in the domain of applied statistics, and later incorporated into a branch of epidemiology, is taken as the starting point. Analysis of the premisses of causal inference brings to light the logical stages in the construction of the concept of risk, allowing it to be understood "from the inside". The abovementioned branch of statistics and epidemiology seeks to demonstrate that statistics can infer causality instead of simply revealing statistical associations; the model gives the basis for estimating that which way be defined as the effect of a cause. Using this procedural distinction between causal inference and association, the model also seeks to differentiate between the epidemiologial dimension of concepts and the merely statiscal dimension. This leads to greater complexity when handing the concepts of interation and coofounding. The redective aspects inherent in this methodological construction of risk are here high lighted. Thus, whether applied to individual or populational inferences, this methodological construction imposes limits that need to be taken into account in its theoretical and pratical application to epidemiology. |
publishDate |
1995 |
dc.date.none.fl_str_mv |
1995-10-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistas.usp.br/rsp/article/view/24143 10.1590/S0034-89101995000500012 |
url |
https://www.revistas.usp.br/rsp/article/view/24143 |
identifier_str_mv |
10.1590/S0034-89101995000500012 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.revistas.usp.br/rsp/article/view/24143/26108 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2017 Revista de Saúde Pública info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2017 Revista de Saúde Pública |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de São Paulo. Faculdade de Saúde Pública |
publisher.none.fl_str_mv |
Universidade de São Paulo. Faculdade de Saúde Pública |
dc.source.none.fl_str_mv |
Revista de Saúde Pública; Vol. 29 No. 5 (1995); 415-423 Revista de Saúde Pública; Vol. 29 Núm. 5 (1995); 415-423 Revista de Saúde Pública; v. 29 n. 5 (1995); 415-423 1518-8787 0034-8910 reponame:Revista de Saúde Pública instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Revista de Saúde Pública |
collection |
Revista de Saúde Pública |
repository.name.fl_str_mv |
Revista de Saúde Pública - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
revsp@org.usp.br||revsp1@usp.br |
_version_ |
1800221777674108928 |