Correction approach for underreporting of deaths and hospital admissions due to ill-defined causes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por eng |
Título da fonte: | Revista de Saúde Pública |
Texto Completo: | https://www.revistas.usp.br/rsp/article/view/32197 |
Resumo: | OBJECTIVE: To propose a correction approach for underreporting and relocation of ill-defined causes of morbidity and mortality in the National Health System Mortality and Hospital Information Systems. METHODS: Modified James-Stein empirical Bayes estimators for events in delimited geographic areas were applied as a correction approach for underreporting in Brazilian municipalities in 2001. RESULTS: There was an increase of 55,671 deaths in the Mortality Information System, an underreporting correction of 5.85%. It was more effective at the age groups under five (8.1%) and 70 years old and more (6.4%); for neonatal (8.7%) and ill-defined (8.0%) causes of death; and in the states of Maranhão (10.6%), Bahia (9.5%) and Alagoas (8.8%). Relocation of ill-defined causes of mortality changed the structure of proportional mortality in the Northern and Northeastern regions, and increased the proportion of deaths due to cardiovascular diseases and reduced those due to external and neonatal causes. Relocation of ill-defined causes of hospital admissions did not affect hospital proportional morbidity. CONCLUSIONS: The results of underreporting correction were consistent with previous studies, in terms of age groups, causes and geographic areas. Relocation of ill-defined causes of death was spatially consistent. The approach studied may be applicable on Brazilian Health Information since it can be implemented in computational algorithms. Some improvements, however, may be considered, like estimation approaches based on time-space event distribution. |
id |
USP-23_8275a3dd94bdc694f39f00da66a869ee |
---|---|
oai_identifier_str |
oai:revistas.usp.br:article/32197 |
network_acronym_str |
USP-23 |
network_name_str |
Revista de Saúde Pública |
repository_id_str |
|
spelling |
Correction approach for underreporting of deaths and hospital admissions due to ill-defined causes Correção de sub-registros de óbitos e proporção de internações por causas mal definidas MortalidadeMorbidadeSub-RegistroCausa da morteSistemas de informaçãoSistema Único de SaúdeMortalityMorbidityUnderregistrationCause of deathInformation systemsNational Health System (BR) OBJECTIVE: To propose a correction approach for underreporting and relocation of ill-defined causes of morbidity and mortality in the National Health System Mortality and Hospital Information Systems. METHODS: Modified James-Stein empirical Bayes estimators for events in delimited geographic areas were applied as a correction approach for underreporting in Brazilian municipalities in 2001. RESULTS: There was an increase of 55,671 deaths in the Mortality Information System, an underreporting correction of 5.85%. It was more effective at the age groups under five (8.1%) and 70 years old and more (6.4%); for neonatal (8.7%) and ill-defined (8.0%) causes of death; and in the states of Maranhão (10.6%), Bahia (9.5%) and Alagoas (8.8%). Relocation of ill-defined causes of mortality changed the structure of proportional mortality in the Northern and Northeastern regions, and increased the proportion of deaths due to cardiovascular diseases and reduced those due to external and neonatal causes. Relocation of ill-defined causes of hospital admissions did not affect hospital proportional morbidity. CONCLUSIONS: The results of underreporting correction were consistent with previous studies, in terms of age groups, causes and geographic areas. Relocation of ill-defined causes of death was spatially consistent. The approach studied may be applicable on Brazilian Health Information since it can be implemented in computational algorithms. Some improvements, however, may be considered, like estimation approaches based on time-space event distribution. OBJETIVO: Propor técnicas de correção de sub-registro e redistribuição de causas mal definidas para o Sistema de Informações sobre Mortalidade e o Sistema de Informações Hospitalares do SUS. MÉTODOS: Para a correção de sub-registro foram utilizados os estimadores bayesianos empíricos de James-Stein modificados para eventos em áreas geográficas delimitadas, aplicadas nos municípios brasileiros, no ano de 2001. RESULTADOS: Em relação aos dados de mortalidade, obteve-se um acréscimo de 55.671 óbitos, resultando num percentual de correção de sub-registro de 5,9%, mais efetivo nas faixas etárias de menores de cinco anos (8,1%) e de 70 anos e mais (6,4%); nas causas perinatais (8,7%) e causas mal definidas (8,0%); e nos Estados do Maranhão (10,6%), Bahia (9,5%) e Alagoas (8,8%). A redistribuição das causas mal definidas de óbito modificou a estrutura da mortalidade proporcional das regiões Norte e Nordeste, com aumento da proporção de óbitos por doenças do aparelho circulatório e redução para as causas externas e perinatais. A redistribuição das causas mal definidas de internação não alterou a morbidade hospitalar proporcional. CONCLUSÕES: Os resultados da correção de sub-registro apresentaram consistência em relação aos achados da literatura, quanto as faixas etárias, causas e regiões do País mais acometidas. Em relação à redistribuição das causas mal-definidas de morte, observou-se coerência espacial na reordenação da mortalidade proporcional. Considera-se este método aplicável aos Sistemas de Informação em Saúde nacionais, já que pode ser implementado em rotinas computacionais. Entretanto, alguns aprimoramentos podem ser considerados, como a distribuição espaço-temporal dos eventos na aplicação dos estimadores. Universidade de São Paulo. Faculdade de Saúde Pública2007-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://www.revistas.usp.br/rsp/article/view/3219710.1590/S0034-89102007000100012Revista de Saúde Pública; Vol. 41 No. 1 (2007); 85-93 Revista de Saúde Pública; Vol. 41 Núm. 1 (2007); 85-93 Revista de Saúde Pública; v. 41 n. 1 (2007); 85-93 1518-87870034-8910reponame:Revista de Saúde Públicainstname:Universidade de São Paulo (USP)instacron:USPporenghttps://www.revistas.usp.br/rsp/article/view/32197/34301https://www.revistas.usp.br/rsp/article/view/32197/34302Copyright (c) 2017 Revista de Saúde Públicainfo:eu-repo/semantics/openAccessCavalini, Luciana TricaiPonce de Leon, Antonio Carlos Monteiro2012-07-09T00:28:51Zoai:revistas.usp.br:article/32197Revistahttps://www.revistas.usp.br/rsp/indexONGhttps://www.revistas.usp.br/rsp/oairevsp@org.usp.br||revsp1@usp.br1518-87870034-8910opendoar:2012-07-09T00:28:51Revista de Saúde Pública - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Correction approach for underreporting of deaths and hospital admissions due to ill-defined causes Correção de sub-registros de óbitos e proporção de internações por causas mal definidas |
title |
Correction approach for underreporting of deaths and hospital admissions due to ill-defined causes |
spellingShingle |
Correction approach for underreporting of deaths and hospital admissions due to ill-defined causes Cavalini, Luciana Tricai Mortalidade Morbidade Sub-Registro Causa da morte Sistemas de informação Sistema Único de Saúde Mortality Morbidity Underregistration Cause of death Information systems National Health System (BR) |
title_short |
Correction approach for underreporting of deaths and hospital admissions due to ill-defined causes |
title_full |
Correction approach for underreporting of deaths and hospital admissions due to ill-defined causes |
title_fullStr |
Correction approach for underreporting of deaths and hospital admissions due to ill-defined causes |
title_full_unstemmed |
Correction approach for underreporting of deaths and hospital admissions due to ill-defined causes |
title_sort |
Correction approach for underreporting of deaths and hospital admissions due to ill-defined causes |
author |
Cavalini, Luciana Tricai |
author_facet |
Cavalini, Luciana Tricai Ponce de Leon, Antonio Carlos Monteiro |
author_role |
author |
author2 |
Ponce de Leon, Antonio Carlos Monteiro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Cavalini, Luciana Tricai Ponce de Leon, Antonio Carlos Monteiro |
dc.subject.por.fl_str_mv |
Mortalidade Morbidade Sub-Registro Causa da morte Sistemas de informação Sistema Único de Saúde Mortality Morbidity Underregistration Cause of death Information systems National Health System (BR) |
topic |
Mortalidade Morbidade Sub-Registro Causa da morte Sistemas de informação Sistema Único de Saúde Mortality Morbidity Underregistration Cause of death Information systems National Health System (BR) |
description |
OBJECTIVE: To propose a correction approach for underreporting and relocation of ill-defined causes of morbidity and mortality in the National Health System Mortality and Hospital Information Systems. METHODS: Modified James-Stein empirical Bayes estimators for events in delimited geographic areas were applied as a correction approach for underreporting in Brazilian municipalities in 2001. RESULTS: There was an increase of 55,671 deaths in the Mortality Information System, an underreporting correction of 5.85%. It was more effective at the age groups under five (8.1%) and 70 years old and more (6.4%); for neonatal (8.7%) and ill-defined (8.0%) causes of death; and in the states of Maranhão (10.6%), Bahia (9.5%) and Alagoas (8.8%). Relocation of ill-defined causes of mortality changed the structure of proportional mortality in the Northern and Northeastern regions, and increased the proportion of deaths due to cardiovascular diseases and reduced those due to external and neonatal causes. Relocation of ill-defined causes of hospital admissions did not affect hospital proportional morbidity. CONCLUSIONS: The results of underreporting correction were consistent with previous studies, in terms of age groups, causes and geographic areas. Relocation of ill-defined causes of death was spatially consistent. The approach studied may be applicable on Brazilian Health Information since it can be implemented in computational algorithms. Some improvements, however, may be considered, like estimation approaches based on time-space event distribution. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-02-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistas.usp.br/rsp/article/view/32197 10.1590/S0034-89102007000100012 |
url |
https://www.revistas.usp.br/rsp/article/view/32197 |
identifier_str_mv |
10.1590/S0034-89102007000100012 |
dc.language.iso.fl_str_mv |
por eng |
language |
por eng |
dc.relation.none.fl_str_mv |
https://www.revistas.usp.br/rsp/article/view/32197/34301 https://www.revistas.usp.br/rsp/article/view/32197/34302 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2017 Revista de Saúde Pública info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2017 Revista de Saúde Pública |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de São Paulo. Faculdade de Saúde Pública |
publisher.none.fl_str_mv |
Universidade de São Paulo. Faculdade de Saúde Pública |
dc.source.none.fl_str_mv |
Revista de Saúde Pública; Vol. 41 No. 1 (2007); 85-93 Revista de Saúde Pública; Vol. 41 Núm. 1 (2007); 85-93 Revista de Saúde Pública; v. 41 n. 1 (2007); 85-93 1518-8787 0034-8910 reponame:Revista de Saúde Pública instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Revista de Saúde Pública |
collection |
Revista de Saúde Pública |
repository.name.fl_str_mv |
Revista de Saúde Pública - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
revsp@org.usp.br||revsp1@usp.br |
_version_ |
1800221786008190976 |