Welding lines formation in holes obtained by low pressure injection molding of ceramic parts
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Cerâmica (São Paulo. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0366-69132018000100097 |
Resumo: | Abstract This work presents a study to evaluate the process of producing internal holes in ceramic disks produced by low pressure injection molding (LPIM) process. Two process conditions defined as pre-injection and post-injection were used to test the proposition. In the first one the pin cores that produce the holes were positioned in the cavity before the injection of the feedstock; and in the second one, the pin cores were positioned in the cavity, just after the feeding phase of the injection mold. An experimental injection mold designed and manufactured to test both processes was developed to produce ceramic disk with Ø 50 x 2 mm with four holes of Ø 5 mm, equally and radially distributed through the disk. The feedstock was composed of 86 wt% alumina (Al2O3) and 14 wt% organic vehicle based on paraffin wax. Heating and cooling systems controlled by a data acquisition system were included in the mold. The results showed that there were no welding lines with the post-injection process, proving to be an option for creating holes in the ceramic parts produced by LPIM. It was observed that best results were obtained at 58 °C mold temperature. The pins extraction temperature was about 45 °C, and the injection pressure was 170 kPa. |
id |
USP-29_6671aaf28a2d70d35944aca496964f9c |
---|---|
oai_identifier_str |
oai:scielo:S0366-69132018000100097 |
network_acronym_str |
USP-29 |
network_name_str |
Cerâmica (São Paulo. Online) |
repository_id_str |
|
spelling |
Welding lines formation in holes obtained by low pressure injection molding of ceramic partslow pressure injection moldingwelding linesholesAbstract This work presents a study to evaluate the process of producing internal holes in ceramic disks produced by low pressure injection molding (LPIM) process. Two process conditions defined as pre-injection and post-injection were used to test the proposition. In the first one the pin cores that produce the holes were positioned in the cavity before the injection of the feedstock; and in the second one, the pin cores were positioned in the cavity, just after the feeding phase of the injection mold. An experimental injection mold designed and manufactured to test both processes was developed to produce ceramic disk with Ø 50 x 2 mm with four holes of Ø 5 mm, equally and radially distributed through the disk. The feedstock was composed of 86 wt% alumina (Al2O3) and 14 wt% organic vehicle based on paraffin wax. Heating and cooling systems controlled by a data acquisition system were included in the mold. The results showed that there were no welding lines with the post-injection process, proving to be an option for creating holes in the ceramic parts produced by LPIM. It was observed that best results were obtained at 58 °C mold temperature. The pins extraction temperature was about 45 °C, and the injection pressure was 170 kPa.Associação Brasileira de Cerâmica2018-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0366-69132018000100097Cerâmica v.64 n.369 2018reponame:Cerâmica (São Paulo. Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/0366-69132018643692260info:eu-repo/semantics/openAccessCosta,C. A.Michels,A. F.Kipper,M. E.eng2018-01-30T00:00:00Zoai:scielo:S0366-69132018000100097Revistahttps://www.scielo.br/j/ce/PUBhttps://old.scielo.br/oai/scielo-oai.phpceram.abc@gmail.com||ceram.abc@gmail.com1678-45530366-6913opendoar:2018-01-30T00:00Cerâmica (São Paulo. Online) - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Welding lines formation in holes obtained by low pressure injection molding of ceramic parts |
title |
Welding lines formation in holes obtained by low pressure injection molding of ceramic parts |
spellingShingle |
Welding lines formation in holes obtained by low pressure injection molding of ceramic parts Costa,C. A. low pressure injection molding welding lines holes |
title_short |
Welding lines formation in holes obtained by low pressure injection molding of ceramic parts |
title_full |
Welding lines formation in holes obtained by low pressure injection molding of ceramic parts |
title_fullStr |
Welding lines formation in holes obtained by low pressure injection molding of ceramic parts |
title_full_unstemmed |
Welding lines formation in holes obtained by low pressure injection molding of ceramic parts |
title_sort |
Welding lines formation in holes obtained by low pressure injection molding of ceramic parts |
author |
Costa,C. A. |
author_facet |
Costa,C. A. Michels,A. F. Kipper,M. E. |
author_role |
author |
author2 |
Michels,A. F. Kipper,M. E. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Costa,C. A. Michels,A. F. Kipper,M. E. |
dc.subject.por.fl_str_mv |
low pressure injection molding welding lines holes |
topic |
low pressure injection molding welding lines holes |
description |
Abstract This work presents a study to evaluate the process of producing internal holes in ceramic disks produced by low pressure injection molding (LPIM) process. Two process conditions defined as pre-injection and post-injection were used to test the proposition. In the first one the pin cores that produce the holes were positioned in the cavity before the injection of the feedstock; and in the second one, the pin cores were positioned in the cavity, just after the feeding phase of the injection mold. An experimental injection mold designed and manufactured to test both processes was developed to produce ceramic disk with Ø 50 x 2 mm with four holes of Ø 5 mm, equally and radially distributed through the disk. The feedstock was composed of 86 wt% alumina (Al2O3) and 14 wt% organic vehicle based on paraffin wax. Heating and cooling systems controlled by a data acquisition system were included in the mold. The results showed that there were no welding lines with the post-injection process, proving to be an option for creating holes in the ceramic parts produced by LPIM. It was observed that best results were obtained at 58 °C mold temperature. The pins extraction temperature was about 45 °C, and the injection pressure was 170 kPa. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0366-69132018000100097 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0366-69132018000100097 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0366-69132018643692260 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Cerâmica |
publisher.none.fl_str_mv |
Associação Brasileira de Cerâmica |
dc.source.none.fl_str_mv |
Cerâmica v.64 n.369 2018 reponame:Cerâmica (São Paulo. Online) instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Cerâmica (São Paulo. Online) |
collection |
Cerâmica (São Paulo. Online) |
repository.name.fl_str_mv |
Cerâmica (São Paulo. Online) - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
ceram.abc@gmail.com||ceram.abc@gmail.com |
_version_ |
1748936783886811136 |