Controlling sintering and grain growth of nanoceramics

Detalhes bibliográficos
Autor(a) principal: Castro,R. H. R.
Data de Publicação: 2019
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Cerâmica (São Paulo. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0366-69132019000100122
Resumo: Abstract Sintering and grain growth are fundamental processes affecting microstructural evolution of ceramics. The phenomenological models describing these processes as found in textbooks are simplifications of the very dynamic set of system’s parameters, which lead to limited predictability and the need for extensive empirical analyses for process optimization. One such simplification is the underestimation of interfacial energies and their relationships with diffusion paths and growth control. The goal of this paper is to clarify how thermodynamics of interfaces can provide opportunities for a more refined control of ceramic processing. On the first part of this paper we discuss the relevance of grain boundary energies in grain growth, showing that although grain boundary mobility is the preferred parameter choice for designing of grain growth inhibition, recent studies demonstrate dopants can be selected to annihilate the process driving force and enable thermally (meta)stable nanoceramics. In the second part of the paper, we point out shortcomings from the current sintering theory and discuss that both surface and grain boundary energies with their associated rates of interfacial area evolution represent a more comprehensive sintering description. This perspective offers tunable parameters that may set a new foundation for the design of sintering aids for optimal densification.
id USP-29_c2c9f52fb1f59ada5ad059bdbc96de2f
oai_identifier_str oai:scielo:S0366-69132019000100122
network_acronym_str USP-29
network_name_str Cerâmica (São Paulo. Online)
repository_id_str
spelling Controlling sintering and grain growth of nanoceramicssinteringgrain growththermodynamicsinterfacesAbstract Sintering and grain growth are fundamental processes affecting microstructural evolution of ceramics. The phenomenological models describing these processes as found in textbooks are simplifications of the very dynamic set of system’s parameters, which lead to limited predictability and the need for extensive empirical analyses for process optimization. One such simplification is the underestimation of interfacial energies and their relationships with diffusion paths and growth control. The goal of this paper is to clarify how thermodynamics of interfaces can provide opportunities for a more refined control of ceramic processing. On the first part of this paper we discuss the relevance of grain boundary energies in grain growth, showing that although grain boundary mobility is the preferred parameter choice for designing of grain growth inhibition, recent studies demonstrate dopants can be selected to annihilate the process driving force and enable thermally (meta)stable nanoceramics. In the second part of the paper, we point out shortcomings from the current sintering theory and discuss that both surface and grain boundary energies with their associated rates of interfacial area evolution represent a more comprehensive sintering description. This perspective offers tunable parameters that may set a new foundation for the design of sintering aids for optimal densification.Associação Brasileira de Cerâmica2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0366-69132019000100122Cerâmica v.65 n.373 2019reponame:Cerâmica (São Paulo. Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/0366-69132019653732573info:eu-repo/semantics/openAccessCastro,R. H. R.eng2019-01-08T00:00:00Zoai:scielo:S0366-69132019000100122Revistahttps://www.scielo.br/j/ce/PUBhttps://old.scielo.br/oai/scielo-oai.phpceram.abc@gmail.com||ceram.abc@gmail.com1678-45530366-6913opendoar:2019-01-08T00:00Cerâmica (São Paulo. Online) - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Controlling sintering and grain growth of nanoceramics
title Controlling sintering and grain growth of nanoceramics
spellingShingle Controlling sintering and grain growth of nanoceramics
Castro,R. H. R.
sintering
grain growth
thermodynamics
interfaces
title_short Controlling sintering and grain growth of nanoceramics
title_full Controlling sintering and grain growth of nanoceramics
title_fullStr Controlling sintering and grain growth of nanoceramics
title_full_unstemmed Controlling sintering and grain growth of nanoceramics
title_sort Controlling sintering and grain growth of nanoceramics
author Castro,R. H. R.
author_facet Castro,R. H. R.
author_role author
dc.contributor.author.fl_str_mv Castro,R. H. R.
dc.subject.por.fl_str_mv sintering
grain growth
thermodynamics
interfaces
topic sintering
grain growth
thermodynamics
interfaces
description Abstract Sintering and grain growth are fundamental processes affecting microstructural evolution of ceramics. The phenomenological models describing these processes as found in textbooks are simplifications of the very dynamic set of system’s parameters, which lead to limited predictability and the need for extensive empirical analyses for process optimization. One such simplification is the underestimation of interfacial energies and their relationships with diffusion paths and growth control. The goal of this paper is to clarify how thermodynamics of interfaces can provide opportunities for a more refined control of ceramic processing. On the first part of this paper we discuss the relevance of grain boundary energies in grain growth, showing that although grain boundary mobility is the preferred parameter choice for designing of grain growth inhibition, recent studies demonstrate dopants can be selected to annihilate the process driving force and enable thermally (meta)stable nanoceramics. In the second part of the paper, we point out shortcomings from the current sintering theory and discuss that both surface and grain boundary energies with their associated rates of interfacial area evolution represent a more comprehensive sintering description. This perspective offers tunable parameters that may set a new foundation for the design of sintering aids for optimal densification.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0366-69132019000100122
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0366-69132019000100122
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0366-69132019653732573
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Cerâmica
publisher.none.fl_str_mv Associação Brasileira de Cerâmica
dc.source.none.fl_str_mv Cerâmica v.65 n.373 2019
reponame:Cerâmica (São Paulo. Online)
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Cerâmica (São Paulo. Online)
collection Cerâmica (São Paulo. Online)
repository.name.fl_str_mv Cerâmica (São Paulo. Online) - Universidade de São Paulo (USP)
repository.mail.fl_str_mv ceram.abc@gmail.com||ceram.abc@gmail.com
_version_ 1748936784263249920