ASSESSMENT OF THE “DISRUPT-O-METER” MODEL BY ORDINAL MULTICRITERIA METHODS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista de Administração e Inovação |
Texto Completo: | https://www.revistas.usp.br/rai/article/view/108324 |
Resumo: | The objective of this article is to explore a potential diagnostic model, called “Disrupt-O-Meter”, about the Christensen’s disruptive innovation theory. The diagnostic model was analyzed under multi-criteria decision aid (MCDA) methods. This diagnosis presents a typical data structure of multi-criteria ordinal problems. Different alternatives were evaluated under a set of criteria, using a scale of ordinal preferences. The steps of a MCDA problem were followed. The chosen methods were the Borda, the Condorcet and the Probabilistic Composition of Preferences (CPP). This article used a database from other research, about 3D printing technology startups. The results showed the best discrimination power by the CPP method, revealing the business category with the most disruptive potential, among other alternatives. |
id |
USP-40_74d687b5ec1ebce5457b6bad2cd50995 |
---|---|
oai_identifier_str |
oai:revistas.usp.br:article/108324 |
network_acronym_str |
USP-40 |
network_name_str |
Revista de Administração e Inovação |
repository_id_str |
|
spelling |
ASSESSMENT OF THE “DISRUPT-O-METER” MODEL BY ORDINAL MULTICRITERIA METHODSDisruptive innovationDisrupt-O-MeterBordaCondorcetCPPThe objective of this article is to explore a potential diagnostic model, called “Disrupt-O-Meter”, about the Christensen’s disruptive innovation theory. The diagnostic model was analyzed under multi-criteria decision aid (MCDA) methods. This diagnosis presents a typical data structure of multi-criteria ordinal problems. Different alternatives were evaluated under a set of criteria, using a scale of ordinal preferences. The steps of a MCDA problem were followed. The chosen methods were the Borda, the Condorcet and the Probabilistic Composition of Preferences (CPP). This article used a database from other research, about 3D printing technology startups. The results showed the best discrimination power by the CPP method, revealing the business category with the most disruptive potential, among other alternatives.Universidade de São Paulo. Faculdade de Economia, Administração e Contabilidade2017-06-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistas.usp.br/rai/article/view/108324INMR - Innovation & Management Review; v. 13 n. 4 (2016); 305-3142515-8961reponame:Revista de Administração e Inovaçãoinstname:Universidade de São Paulo (USP)instacron:USPenghttps://www.revistas.usp.br/rai/article/view/108324/129480Gavião, Luiz OctávioFerraz, Fernando ToledoLima, Gilson Brito AlvesSant'Anna, Annibal Parrachoinfo:eu-repo/semantics/openAccess2018-08-08T13:16:19Zoai:revistas.usp.br:article/108324Revistahttp://www.viannajr.edu.br/wp-content/uploads/2016/01/raiPUBhttp://www.revistas.usp.br/viaatlantica/oairevistarai@usp.br||tatianepgt@revistarai.org1809-20391809-2039opendoar:2018-08-08T13:16:19Revista de Administração e Inovação - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
ASSESSMENT OF THE “DISRUPT-O-METER” MODEL BY ORDINAL MULTICRITERIA METHODS |
title |
ASSESSMENT OF THE “DISRUPT-O-METER” MODEL BY ORDINAL MULTICRITERIA METHODS |
spellingShingle |
ASSESSMENT OF THE “DISRUPT-O-METER” MODEL BY ORDINAL MULTICRITERIA METHODS Gavião, Luiz Octávio Disruptive innovation Disrupt-O-Meter Borda Condorcet CPP |
title_short |
ASSESSMENT OF THE “DISRUPT-O-METER” MODEL BY ORDINAL MULTICRITERIA METHODS |
title_full |
ASSESSMENT OF THE “DISRUPT-O-METER” MODEL BY ORDINAL MULTICRITERIA METHODS |
title_fullStr |
ASSESSMENT OF THE “DISRUPT-O-METER” MODEL BY ORDINAL MULTICRITERIA METHODS |
title_full_unstemmed |
ASSESSMENT OF THE “DISRUPT-O-METER” MODEL BY ORDINAL MULTICRITERIA METHODS |
title_sort |
ASSESSMENT OF THE “DISRUPT-O-METER” MODEL BY ORDINAL MULTICRITERIA METHODS |
author |
Gavião, Luiz Octávio |
author_facet |
Gavião, Luiz Octávio Ferraz, Fernando Toledo Lima, Gilson Brito Alves Sant'Anna, Annibal Parracho |
author_role |
author |
author2 |
Ferraz, Fernando Toledo Lima, Gilson Brito Alves Sant'Anna, Annibal Parracho |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Gavião, Luiz Octávio Ferraz, Fernando Toledo Lima, Gilson Brito Alves Sant'Anna, Annibal Parracho |
dc.subject.por.fl_str_mv |
Disruptive innovation Disrupt-O-Meter Borda Condorcet CPP |
topic |
Disruptive innovation Disrupt-O-Meter Borda Condorcet CPP |
description |
The objective of this article is to explore a potential diagnostic model, called “Disrupt-O-Meter”, about the Christensen’s disruptive innovation theory. The diagnostic model was analyzed under multi-criteria decision aid (MCDA) methods. This diagnosis presents a typical data structure of multi-criteria ordinal problems. Different alternatives were evaluated under a set of criteria, using a scale of ordinal preferences. The steps of a MCDA problem were followed. The chosen methods were the Borda, the Condorcet and the Probabilistic Composition of Preferences (CPP). This article used a database from other research, about 3D printing technology startups. The results showed the best discrimination power by the CPP method, revealing the business category with the most disruptive potential, among other alternatives. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-06 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistas.usp.br/rai/article/view/108324 |
url |
https://www.revistas.usp.br/rai/article/view/108324 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.revistas.usp.br/rai/article/view/108324/129480 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de São Paulo. Faculdade de Economia, Administração e Contabilidade |
publisher.none.fl_str_mv |
Universidade de São Paulo. Faculdade de Economia, Administração e Contabilidade |
dc.source.none.fl_str_mv |
INMR - Innovation & Management Review; v. 13 n. 4 (2016); 305-314 2515-8961 reponame:Revista de Administração e Inovação instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Revista de Administração e Inovação |
collection |
Revista de Administração e Inovação |
repository.name.fl_str_mv |
Revista de Administração e Inovação - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
revistarai@usp.br||tatianepgt@revistarai.org |
_version_ |
1800221936706387968 |