Estudos químico-agrícolas sôbre o enxofre
Autor(a) principal: | |
---|---|
Data de Publicação: | 1951 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Anais da Escola Superior de Agricultura Luiz de Queiroz |
Texto Completo: | https://www.revistas.usp.br/aesalq/article/view/48950 |
Resumo: | 1. Analyses of soluble sulphates in 2 N ammonium chloride extracts of 24 samples of soils of the state of São Paulo, Brazil, S. A., showed a sulphur content varying from 0,0013 g per 100 g (found in the b layer of a genuine "terra roxa") to 0,007 g per 100 g of soil (b layer of a soil of depression without definite characteristics). (The results are expressed as elemental sulphur). Determinations of total sulphur in 56 samples of soils of the same state using the method of fusion with sodium carbonate and sodium nitrate revealed 0.007 g of elemental S per 100 g of soil as the lowest value (found in several soil types) and 0.096 g as the highest one (found in the b layer of an ar-quean soil). Apparently soluble sulphates accumulate in the upper layers and total sulphur does the opposite. It was found a strong correlation between total S and carbon content. 2. Under laboratory conditions, in a compost of fresh soil, powdered sulphur and apatite, it was verified after a three months period of incubation that the pH value lowered from 6.30 to 3.23; the citric acid solubility of apatite increased to 271.1 per cent of the original one. Lupinus sp. grown in soil manured with sulphur and apatite has showed fresh and dry weights higher than the plants in control pots; the results are significant at 5% level of probability; phosphorus content is also higher in the manured plants. It was observed a net influence of the apatite plus sulphur treatment on the weight of root nodosities that was four times greater than in the control plants. 3. Nearly five hundred determinations of S, N and P were carried out in 35 species of plants cultivated in the state of São Paulo. A great variation in the amounts of these elements was observed. As a general rule, the leaves contain more sulphur than the stems and roots show the lowest percentages. The conjunct roots and stem of guar (Cyamopsis psoraloides) revealed only 0.019 per cent sulphur; the leaves of kale showed the highest sulphur content, i. e., 2.114%. Apparently there is no correlation between the amounts of S, N and P. The ratio S/N increases from 0.006 (guar) to 0.485 (kale). The ratio S/P, always higher than the corresponding S/N, increases from 0.082 (guar) to 6.381 (older leaves of tomato plants). It is interesting to mention that several among the most important crops in the state of São Paulo namely, cotton, rice, coffee and sugar cane contain more sulphur than phosphorus. 4. Tomato plants cultivated in nutrient solution lacking sulphur showed the following visual symptons of deficiency : chlorosis first in the younger leaves and afterwards in all the leaves; anthocyanin pigments in the petioles and stems; absence of fruits; primary roots stunted and secondary ones longer than in the control plants; stems slender, hard, woody. The histological study of petioles suffering from sulphur deficiency revealed anthocyanin in the parenchyme layer instead of clo-rophyll pigments observed in normal petioles; in the chlorotic leaves the large chloroplasts present only the stroma but the small ones have a little amount of green pigments. Chemical analysis revealed in the abnormal plants : less sulphur and an increased proportion of phosphorus; older leaves contain more sulphur and less phosphorus than the younger ones probably due to physiological difficulties in translocation of sulphur bearing material; increased amount of total N attributed to accumulation of nitrates; marked decrease in ash, sugars and starch; increased proportion of crude fiber and dry material. In the plants suffering from sulphur deficiency photosyntetic rate decreased 34 per cent. 5. Tomato plants were succesfully cultivated in nutrient solution in absence of mineral sulphur but in presence of cysteine. The plants absorbed sulphur, under that form and were able to grow up quite well; the fruiting was normal. In this way rested cleary demonstrated the possibility of absorption of organic sulphur without previous mineralization and its utilization in the building up of protein molecules. |
id |
USP-46_f9f64ff283913b4f02638b8c2d707ffc |
---|---|
oai_identifier_str |
oai:revistas.usp.br:article/48950 |
network_acronym_str |
USP-46 |
network_name_str |
Anais da Escola Superior de Agricultura Luiz de Queiroz |
repository_id_str |
|
spelling |
Estudos químico-agrícolas sôbre o enxofre1. Analyses of soluble sulphates in 2 N ammonium chloride extracts of 24 samples of soils of the state of São Paulo, Brazil, S. A., showed a sulphur content varying from 0,0013 g per 100 g (found in the b layer of a genuine "terra roxa") to 0,007 g per 100 g of soil (b layer of a soil of depression without definite characteristics). (The results are expressed as elemental sulphur). Determinations of total sulphur in 56 samples of soils of the same state using the method of fusion with sodium carbonate and sodium nitrate revealed 0.007 g of elemental S per 100 g of soil as the lowest value (found in several soil types) and 0.096 g as the highest one (found in the b layer of an ar-quean soil). Apparently soluble sulphates accumulate in the upper layers and total sulphur does the opposite. It was found a strong correlation between total S and carbon content. 2. Under laboratory conditions, in a compost of fresh soil, powdered sulphur and apatite, it was verified after a three months period of incubation that the pH value lowered from 6.30 to 3.23; the citric acid solubility of apatite increased to 271.1 per cent of the original one. Lupinus sp. grown in soil manured with sulphur and apatite has showed fresh and dry weights higher than the plants in control pots; the results are significant at 5% level of probability; phosphorus content is also higher in the manured plants. It was observed a net influence of the apatite plus sulphur treatment on the weight of root nodosities that was four times greater than in the control plants. 3. Nearly five hundred determinations of S, N and P were carried out in 35 species of plants cultivated in the state of São Paulo. A great variation in the amounts of these elements was observed. As a general rule, the leaves contain more sulphur than the stems and roots show the lowest percentages. The conjunct roots and stem of guar (Cyamopsis psoraloides) revealed only 0.019 per cent sulphur; the leaves of kale showed the highest sulphur content, i. e., 2.114%. Apparently there is no correlation between the amounts of S, N and P. The ratio S/N increases from 0.006 (guar) to 0.485 (kale). The ratio S/P, always higher than the corresponding S/N, increases from 0.082 (guar) to 6.381 (older leaves of tomato plants). It is interesting to mention that several among the most important crops in the state of São Paulo namely, cotton, rice, coffee and sugar cane contain more sulphur than phosphorus. 4. Tomato plants cultivated in nutrient solution lacking sulphur showed the following visual symptons of deficiency : chlorosis first in the younger leaves and afterwards in all the leaves; anthocyanin pigments in the petioles and stems; absence of fruits; primary roots stunted and secondary ones longer than in the control plants; stems slender, hard, woody. The histological study of petioles suffering from sulphur deficiency revealed anthocyanin in the parenchyme layer instead of clo-rophyll pigments observed in normal petioles; in the chlorotic leaves the large chloroplasts present only the stroma but the small ones have a little amount of green pigments. Chemical analysis revealed in the abnormal plants : less sulphur and an increased proportion of phosphorus; older leaves contain more sulphur and less phosphorus than the younger ones probably due to physiological difficulties in translocation of sulphur bearing material; increased amount of total N attributed to accumulation of nitrates; marked decrease in ash, sugars and starch; increased proportion of crude fiber and dry material. In the plants suffering from sulphur deficiency photosyntetic rate decreased 34 per cent. 5. Tomato plants were succesfully cultivated in nutrient solution in absence of mineral sulphur but in presence of cysteine. The plants absorbed sulphur, under that form and were able to grow up quite well; the fruiting was normal. In this way rested cleary demonstrated the possibility of absorption of organic sulphur without previous mineralization and its utilization in the building up of protein molecules.Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz1951-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistas.usp.br/aesalq/article/view/4895010.1590/S0071-12761952000100004Anais da Escola Superior de Agricultura Luiz de Queiroz; v. 9 (1952); 39-1302316-89350071-1276reponame:Anais da Escola Superior de Agricultura Luiz de Queirozinstname:Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP)instacron:USPporhttps://www.revistas.usp.br/aesalq/article/view/48950/53029Malavolta, Eurípedesinfo:eu-repo/semantics/openAccess2012-12-21T13:11:33Zoai:revistas.usp.br:article/48950Revistahttps://www.revistas.usp.br/aesalq/about/contactPUBhttps://www.revistas.usp.br/aesalq/oaiscientia@esalq.usp.br0071-12760071-1276opendoar:2012-12-21T13:11:33Anais da Escola Superior de Agricultura Luiz de Queiroz - Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP)false |
dc.title.none.fl_str_mv |
Estudos químico-agrícolas sôbre o enxofre |
title |
Estudos químico-agrícolas sôbre o enxofre |
spellingShingle |
Estudos químico-agrícolas sôbre o enxofre Malavolta, Eurípedes |
title_short |
Estudos químico-agrícolas sôbre o enxofre |
title_full |
Estudos químico-agrícolas sôbre o enxofre |
title_fullStr |
Estudos químico-agrícolas sôbre o enxofre |
title_full_unstemmed |
Estudos químico-agrícolas sôbre o enxofre |
title_sort |
Estudos químico-agrícolas sôbre o enxofre |
author |
Malavolta, Eurípedes |
author_facet |
Malavolta, Eurípedes |
author_role |
author |
dc.contributor.author.fl_str_mv |
Malavolta, Eurípedes |
description |
1. Analyses of soluble sulphates in 2 N ammonium chloride extracts of 24 samples of soils of the state of São Paulo, Brazil, S. A., showed a sulphur content varying from 0,0013 g per 100 g (found in the b layer of a genuine "terra roxa") to 0,007 g per 100 g of soil (b layer of a soil of depression without definite characteristics). (The results are expressed as elemental sulphur). Determinations of total sulphur in 56 samples of soils of the same state using the method of fusion with sodium carbonate and sodium nitrate revealed 0.007 g of elemental S per 100 g of soil as the lowest value (found in several soil types) and 0.096 g as the highest one (found in the b layer of an ar-quean soil). Apparently soluble sulphates accumulate in the upper layers and total sulphur does the opposite. It was found a strong correlation between total S and carbon content. 2. Under laboratory conditions, in a compost of fresh soil, powdered sulphur and apatite, it was verified after a three months period of incubation that the pH value lowered from 6.30 to 3.23; the citric acid solubility of apatite increased to 271.1 per cent of the original one. Lupinus sp. grown in soil manured with sulphur and apatite has showed fresh and dry weights higher than the plants in control pots; the results are significant at 5% level of probability; phosphorus content is also higher in the manured plants. It was observed a net influence of the apatite plus sulphur treatment on the weight of root nodosities that was four times greater than in the control plants. 3. Nearly five hundred determinations of S, N and P were carried out in 35 species of plants cultivated in the state of São Paulo. A great variation in the amounts of these elements was observed. As a general rule, the leaves contain more sulphur than the stems and roots show the lowest percentages. The conjunct roots and stem of guar (Cyamopsis psoraloides) revealed only 0.019 per cent sulphur; the leaves of kale showed the highest sulphur content, i. e., 2.114%. Apparently there is no correlation between the amounts of S, N and P. The ratio S/N increases from 0.006 (guar) to 0.485 (kale). The ratio S/P, always higher than the corresponding S/N, increases from 0.082 (guar) to 6.381 (older leaves of tomato plants). It is interesting to mention that several among the most important crops in the state of São Paulo namely, cotton, rice, coffee and sugar cane contain more sulphur than phosphorus. 4. Tomato plants cultivated in nutrient solution lacking sulphur showed the following visual symptons of deficiency : chlorosis first in the younger leaves and afterwards in all the leaves; anthocyanin pigments in the petioles and stems; absence of fruits; primary roots stunted and secondary ones longer than in the control plants; stems slender, hard, woody. The histological study of petioles suffering from sulphur deficiency revealed anthocyanin in the parenchyme layer instead of clo-rophyll pigments observed in normal petioles; in the chlorotic leaves the large chloroplasts present only the stroma but the small ones have a little amount of green pigments. Chemical analysis revealed in the abnormal plants : less sulphur and an increased proportion of phosphorus; older leaves contain more sulphur and less phosphorus than the younger ones probably due to physiological difficulties in translocation of sulphur bearing material; increased amount of total N attributed to accumulation of nitrates; marked decrease in ash, sugars and starch; increased proportion of crude fiber and dry material. In the plants suffering from sulphur deficiency photosyntetic rate decreased 34 per cent. 5. Tomato plants were succesfully cultivated in nutrient solution in absence of mineral sulphur but in presence of cysteine. The plants absorbed sulphur, under that form and were able to grow up quite well; the fruiting was normal. In this way rested cleary demonstrated the possibility of absorption of organic sulphur without previous mineralization and its utilization in the building up of protein molecules. |
publishDate |
1951 |
dc.date.none.fl_str_mv |
1951-12-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistas.usp.br/aesalq/article/view/48950 10.1590/S0071-12761952000100004 |
url |
https://www.revistas.usp.br/aesalq/article/view/48950 |
identifier_str_mv |
10.1590/S0071-12761952000100004 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.revistas.usp.br/aesalq/article/view/48950/53029 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz |
publisher.none.fl_str_mv |
Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz |
dc.source.none.fl_str_mv |
Anais da Escola Superior de Agricultura Luiz de Queiroz; v. 9 (1952); 39-130 2316-8935 0071-1276 reponame:Anais da Escola Superior de Agricultura Luiz de Queiroz instname:Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP) instacron:USP |
instname_str |
Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Anais da Escola Superior de Agricultura Luiz de Queiroz |
collection |
Anais da Escola Superior de Agricultura Luiz de Queiroz |
repository.name.fl_str_mv |
Anais da Escola Superior de Agricultura Luiz de Queiroz - Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP) |
repository.mail.fl_str_mv |
scientia@esalq.usp.br |
_version_ |
1797050008670830592 |