Um método robusto de volumes finitos de alta ordem para advecção em malhas esféricas geodésicas

Detalhes bibliográficos
Autor(a) principal: Jeferson Brambatti Granjeiro
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://doi.org/10.11606/T.45.2019.tde-26082019-163438
Resumo: A esfera é comumente usada como domínio computacional para representar o planeta Terra. Dessa forma, é possível modelar diversos fenômenos físicos, como a previsão numérica do tempo. A discretização pode ser feita de formas distintas, mas devido a uma crescente necessidade de eficiência computacional, as malhas geodésicas têm ganhado a atenção da comunidade científica. Dentre as quais, por serem mais isotrópicas em relação às malhas latitude/longitude, destacam-se as malhas icosaédricas. A qualidade dos modelos de previsão do tempo é fortemente influenciada pela precisão da solução da equação de advecção (ou transporte), pois, é necessário avaliar o transporte de diversas substâncias presentes na atmosfera. Nesse contexto, pesquisadores têm se interessado em desenvolver métodos de alta ordem na esfera para melhorar a qualidade da solução do transporte escalar. Apesar de existirem alguns modelos numéricos de alta ordem que usam malhas icosaédricas, não há consenso sobre as metodologias e os tipos de malhas a serem utilizadas. O objetivo deste trabalho foi estudar os métodos disponíveis na literatura e propor um novo método de alta ordem na esfera, baseado nos trabalhos de Ollivier-Gooch e colaboradores. O método de volumes finitos de alta ordem foi validado com testes de interpolação, integração e discretização do divergente. Por fim, foram utilizadas várias funções testes para a advecção. Os resultados foram comparados com os da literatura para malhas icosaédricas com distintas otimizações. Os testes incluem funções suaves, com descontinuidades e testes de deformações na distribuição do campo transportado, que são fundamentais no desenvolvimento de modelos atmosféricos globais. Os resultados numéricos mostram que o método proposto, que será denominado por FV-OLG, foi capaz de obter alta ordem de precisão e verificou-se que as taxas de erro são pouco influenciadas por distorções de malha. Foi feito um teste adicional para avaliar o transporte de uma colina de gaussiana na malha icosaédrica com refinamento local. Os resultados obtidos demonstram que as taxas de convergências são as mesmas obtidas em malhas com distintas otimizações, demonstrando ser um método robusto a ser explorado em modelos atmosféricos globais.
id USP_00c3a94b019c9cc4ce3ee227c5a5b1c6
oai_identifier_str oai:teses.usp.br:tde-26082019-163438
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis Um método robusto de volumes finitos de alta ordem para advecção em malhas esféricas geodésicas A robust high-order finite volume method for advection on geodesic spherical grids 2019-06-28Pedro da Silva PeixotoSaulo Rabello Maciel de BarrosPedro Leite da Silva DiasWellington Carlos de JesusErnani Vitillo VolpeJeferson Brambatti GranjeiroUniversidade de São PauloMatemática AplicadaUSPBR Advecção Advection Alta ordem Finite volumes Geodesic grids High order Icosahedral mesh Malha icosaédrica Malhas geodésicas Transport Transporte Volumes finitos A esfera é comumente usada como domínio computacional para representar o planeta Terra. Dessa forma, é possível modelar diversos fenômenos físicos, como a previsão numérica do tempo. A discretização pode ser feita de formas distintas, mas devido a uma crescente necessidade de eficiência computacional, as malhas geodésicas têm ganhado a atenção da comunidade científica. Dentre as quais, por serem mais isotrópicas em relação às malhas latitude/longitude, destacam-se as malhas icosaédricas. A qualidade dos modelos de previsão do tempo é fortemente influenciada pela precisão da solução da equação de advecção (ou transporte), pois, é necessário avaliar o transporte de diversas substâncias presentes na atmosfera. Nesse contexto, pesquisadores têm se interessado em desenvolver métodos de alta ordem na esfera para melhorar a qualidade da solução do transporte escalar. Apesar de existirem alguns modelos numéricos de alta ordem que usam malhas icosaédricas, não há consenso sobre as metodologias e os tipos de malhas a serem utilizadas. O objetivo deste trabalho foi estudar os métodos disponíveis na literatura e propor um novo método de alta ordem na esfera, baseado nos trabalhos de Ollivier-Gooch e colaboradores. O método de volumes finitos de alta ordem foi validado com testes de interpolação, integração e discretização do divergente. Por fim, foram utilizadas várias funções testes para a advecção. Os resultados foram comparados com os da literatura para malhas icosaédricas com distintas otimizações. Os testes incluem funções suaves, com descontinuidades e testes de deformações na distribuição do campo transportado, que são fundamentais no desenvolvimento de modelos atmosféricos globais. Os resultados numéricos mostram que o método proposto, que será denominado por FV-OLG, foi capaz de obter alta ordem de precisão e verificou-se que as taxas de erro são pouco influenciadas por distorções de malha. Foi feito um teste adicional para avaliar o transporte de uma colina de gaussiana na malha icosaédrica com refinamento local. Os resultados obtidos demonstram que as taxas de convergências são as mesmas obtidas em malhas com distintas otimizações, demonstrando ser um método robusto a ser explorado em modelos atmosféricos globais. The sphere is commonly used as a computational domain to represent the planet Earth. In this way, it is possible to model several physical phenomena, such as the numerical weather forecast. Discretization can be done in different ways, but due to an increasing need for computational efficiency, geodesic meshes have gained the attention of the scientific community. These are more isotropic in relation to the latitude / longitude meshes, among which, the icosahedral meshes stand out. The quality of weather forecast models is strongly influenced by the accuracy of the solution of the advection (or transport) equation, since it is necessary to evaluate the transport of various substances present in the atmosphere. In this context, researchers have been interested in developing high-order methods on the sphere to improve the quality of the scalar transport solution. Although there are some high order numerical models that use icosahedral meshes, there is no consensus on the methodologies and types of meshes to be used. The objective of this work was to study the methods available in the literature and to propose a new high order method in the sphere, based on the works of Ollivier-Gooch et al. The finite-order finite-volume method was validated with inter- polation, integration and discretization tests of the divergent. For this purpose, several tests were used for the advection and the results were compared with those from the literature for icosahedral meshes with different optimizations. The tests include smooth functions, with discontinuities and tests of deformations in the distribution of the transported field, which are fundamental in the development of global atmospheric models. The numerical results show that the proposed method, which will be called FV-OLG, was able to obtain a high order of accuracy and verified that the error rates are little influenced by mesh distortion. An additional test was carried out to evaluate the transport of a Gaussian hill in the icosahedral grid with local refinement. The results show that the convergence rates are the same as those obtained in meshes with different optimizations, demonstrating that it is a robust method to be used in global atmospheric models. https://doi.org/10.11606/T.45.2019.tde-26082019-163438info:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USP2023-12-21T20:13:35Zoai:teses.usp.br:tde-26082019-163438Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-22T13:21:03.768186Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.pt.fl_str_mv Um método robusto de volumes finitos de alta ordem para advecção em malhas esféricas geodésicas
dc.title.alternative.en.fl_str_mv A robust high-order finite volume method for advection on geodesic spherical grids
title Um método robusto de volumes finitos de alta ordem para advecção em malhas esféricas geodésicas
spellingShingle Um método robusto de volumes finitos de alta ordem para advecção em malhas esféricas geodésicas
Jeferson Brambatti Granjeiro
title_short Um método robusto de volumes finitos de alta ordem para advecção em malhas esféricas geodésicas
title_full Um método robusto de volumes finitos de alta ordem para advecção em malhas esféricas geodésicas
title_fullStr Um método robusto de volumes finitos de alta ordem para advecção em malhas esféricas geodésicas
title_full_unstemmed Um método robusto de volumes finitos de alta ordem para advecção em malhas esféricas geodésicas
title_sort Um método robusto de volumes finitos de alta ordem para advecção em malhas esféricas geodésicas
author Jeferson Brambatti Granjeiro
author_facet Jeferson Brambatti Granjeiro
author_role author
dc.contributor.advisor1.fl_str_mv Pedro da Silva Peixoto
dc.contributor.referee1.fl_str_mv Saulo Rabello Maciel de Barros
dc.contributor.referee2.fl_str_mv Pedro Leite da Silva Dias
dc.contributor.referee3.fl_str_mv Wellington Carlos de Jesus
dc.contributor.referee4.fl_str_mv Ernani Vitillo Volpe
dc.contributor.author.fl_str_mv Jeferson Brambatti Granjeiro
contributor_str_mv Pedro da Silva Peixoto
Saulo Rabello Maciel de Barros
Pedro Leite da Silva Dias
Wellington Carlos de Jesus
Ernani Vitillo Volpe
description A esfera é comumente usada como domínio computacional para representar o planeta Terra. Dessa forma, é possível modelar diversos fenômenos físicos, como a previsão numérica do tempo. A discretização pode ser feita de formas distintas, mas devido a uma crescente necessidade de eficiência computacional, as malhas geodésicas têm ganhado a atenção da comunidade científica. Dentre as quais, por serem mais isotrópicas em relação às malhas latitude/longitude, destacam-se as malhas icosaédricas. A qualidade dos modelos de previsão do tempo é fortemente influenciada pela precisão da solução da equação de advecção (ou transporte), pois, é necessário avaliar o transporte de diversas substâncias presentes na atmosfera. Nesse contexto, pesquisadores têm se interessado em desenvolver métodos de alta ordem na esfera para melhorar a qualidade da solução do transporte escalar. Apesar de existirem alguns modelos numéricos de alta ordem que usam malhas icosaédricas, não há consenso sobre as metodologias e os tipos de malhas a serem utilizadas. O objetivo deste trabalho foi estudar os métodos disponíveis na literatura e propor um novo método de alta ordem na esfera, baseado nos trabalhos de Ollivier-Gooch e colaboradores. O método de volumes finitos de alta ordem foi validado com testes de interpolação, integração e discretização do divergente. Por fim, foram utilizadas várias funções testes para a advecção. Os resultados foram comparados com os da literatura para malhas icosaédricas com distintas otimizações. Os testes incluem funções suaves, com descontinuidades e testes de deformações na distribuição do campo transportado, que são fundamentais no desenvolvimento de modelos atmosféricos globais. Os resultados numéricos mostram que o método proposto, que será denominado por FV-OLG, foi capaz de obter alta ordem de precisão e verificou-se que as taxas de erro são pouco influenciadas por distorções de malha. Foi feito um teste adicional para avaliar o transporte de uma colina de gaussiana na malha icosaédrica com refinamento local. Os resultados obtidos demonstram que as taxas de convergências são as mesmas obtidas em malhas com distintas otimizações, demonstrando ser um método robusto a ser explorado em modelos atmosféricos globais.
publishDate 2019
dc.date.issued.fl_str_mv 2019-06-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.11606/T.45.2019.tde-26082019-163438
url https://doi.org/10.11606/T.45.2019.tde-26082019-163438
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de São Paulo
dc.publisher.program.fl_str_mv Matemática Aplicada
dc.publisher.initials.fl_str_mv USP
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1794503071058886656