Condução eletrônica através de um contato quântico pontual

Detalhes bibliográficos
Autor(a) principal: Campo Júnior, Vivaldo Leiria
Data de Publicação: 1999
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-15092008-110734/
Resumo: Neste trabalho é apresentado o cálculo, pelo grupo de renormalização numérico, da condutância AC através de uma nanoestrutura acoplada a gases eletrônicos, a baixa temperatura e no regime de resposta linear. Este sistema apresenta a competição entre dois efeitos: blo¬queio Coulombiano e efeito Kondo. Nosso modelo considera gases eletrônicos unidimensionais que são unidos pelas extremidades para formar um anel, no qual a corrente é induzida por um fluxo magnético oscilante com freqüência . Nós partimos de um modelo tight-binding de vizinhos mais próximos para os gases eletrônicos e, deste modo, o potencial vetor é facilmente incorporado ao Hamiltoniano por condições de contorno torsionais. Uma barreira de potencial entre os gases eletrônicos e a nanoestrutura é simulada em termos de uma taxa de tunelamento entre a nanoestrutura e os sítios adjacentes menor que aquela entre entre sítios vizinhos no anel. A capacitância da nanoestrutura é pequena, o que implica que nós podemos considerar mudanças no número de elétrons dentro da mesma por apenas uma unidade. Como conseqüência, o Hamiltoniano é mapeado no Hamiltoniano de Anderson com correlação U entre os elétrons. Uma voltagem de gate controla a energia da impureza (da nanoestrutura), 0. Plotada como função de , a condutância mostra dois picos característicos do bloqueio Coulombiano, em freqüências correspondentes às energias para adicionar um elétron à nanoestrutura e para remover um elétron da nanoestrutura respectivamente. No regime Kondo, 0 > 0 > -U (ou seja, para voltagens de gate tais que a nanoestrutura isolada teria estado fundamental com degenerescência de spin), um pico (Kondo) adicional aparece próximo à = 0. Plotada como função de Vg, a condutância DC mostra um largo pico no regime Kondo, caindo rapidamente a zero para voltagens resultando em um estado fundamental não degenerado para a nanoestrutura isolada. Uma relação entre a condutância e a densidade espectral do nível da impureza é obtida e utilizada para interpretar os resultados numéricos.
id USP_00d9e4697b61d46fb9ec59e18dce09c4
oai_identifier_str oai:teses.usp.br:tde-15092008-110734
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Condução eletrônica através de um contato quântico pontualElectronic transport through a quantum point contactAC ConductanceAnderson modelBloqueio CoulombianoCondutância ACCoulomb blockadeEfeito KondoGrupo de renormalizaçãoKondo effectModelo de AndersonRenormalization groupNeste trabalho é apresentado o cálculo, pelo grupo de renormalização numérico, da condutância AC através de uma nanoestrutura acoplada a gases eletrônicos, a baixa temperatura e no regime de resposta linear. Este sistema apresenta a competição entre dois efeitos: blo¬queio Coulombiano e efeito Kondo. Nosso modelo considera gases eletrônicos unidimensionais que são unidos pelas extremidades para formar um anel, no qual a corrente é induzida por um fluxo magnético oscilante com freqüência . Nós partimos de um modelo tight-binding de vizinhos mais próximos para os gases eletrônicos e, deste modo, o potencial vetor é facilmente incorporado ao Hamiltoniano por condições de contorno torsionais. Uma barreira de potencial entre os gases eletrônicos e a nanoestrutura é simulada em termos de uma taxa de tunelamento entre a nanoestrutura e os sítios adjacentes menor que aquela entre entre sítios vizinhos no anel. A capacitância da nanoestrutura é pequena, o que implica que nós podemos considerar mudanças no número de elétrons dentro da mesma por apenas uma unidade. Como conseqüência, o Hamiltoniano é mapeado no Hamiltoniano de Anderson com correlação U entre os elétrons. Uma voltagem de gate controla a energia da impureza (da nanoestrutura), 0. Plotada como função de , a condutância mostra dois picos característicos do bloqueio Coulombiano, em freqüências correspondentes às energias para adicionar um elétron à nanoestrutura e para remover um elétron da nanoestrutura respectivamente. No regime Kondo, 0 > 0 > -U (ou seja, para voltagens de gate tais que a nanoestrutura isolada teria estado fundamental com degenerescência de spin), um pico (Kondo) adicional aparece próximo à = 0. Plotada como função de Vg, a condutância DC mostra um largo pico no regime Kondo, caindo rapidamente a zero para voltagens resultando em um estado fundamental não degenerado para a nanoestrutura isolada. Uma relação entre a condutância e a densidade espectral do nível da impureza é obtida e utilizada para interpretar os resultados numéricos.In this work a renormalization-group calculation of the low-temperature AC conductance in the linear response regime through a nanostructure coupled to metallic leads is presented. This system shows a competition between two effects: the Coulomb blockade and the Kon¬do effect. Our model considers one-dimensional leads which are connected to form a ring, in which a current is induced by a magnetic flux oscillating at the frequency . We start from a nearest-neighbor tight-binding model for the leads and in this way the potential vector is easily incorporated in the model Hamiltonian by twisting boundary conditions. A potential barrier between the leads and the nanostructure is simulated in terms of a tunneling rate between the nanostructure and the adjacent sites in the leads, which is smaller than the one between neighbors sites in the leads. The capacity of the nanostructure is small, which implies that substantial energy changes are associated with each electron transfered to the nanostructure. As a consequence, the model Hamiltonian maps onto the spin-degenerate Anderson Hamiltoni¬an with correlation U between the electrons. A gate voltage Vg controls the impurity (i.e., nanostructure) energy 0. Plotted as a function of , the conductivity shows two Coulomb-blockade peaks, at the energy needed to add an electron to and to remove an electron from the nanostructure, respectively. In the Kondo regime 0 > 0 > -U (i.e., for gate voltages such that the isolated nanostructure would have a spin-degeneration ground state), an addition (Kondo) peak appears near = 0. Plotted as functions of Vg, the static conductivity shows a broad peak in the Kondo regime and drops rapidly to zero for voltages resulting in a non-degenerate nanostructure ground state. A relation between the conductance and the spectral density of the impurity is obtained and used to interpret the numerical results.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Luiz Nunes deCampo Júnior, Vivaldo Leiria1999-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76131/tde-15092008-110734/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:56Zoai:teses.usp.br:tde-15092008-110734Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Condução eletrônica através de um contato quântico pontual
Electronic transport through a quantum point contact
title Condução eletrônica através de um contato quântico pontual
spellingShingle Condução eletrônica através de um contato quântico pontual
Campo Júnior, Vivaldo Leiria
AC Conductance
Anderson model
Bloqueio Coulombiano
Condutância AC
Coulomb blockade
Efeito Kondo
Grupo de renormalização
Kondo effect
Modelo de Anderson
Renormalization group
title_short Condução eletrônica através de um contato quântico pontual
title_full Condução eletrônica através de um contato quântico pontual
title_fullStr Condução eletrônica através de um contato quântico pontual
title_full_unstemmed Condução eletrônica através de um contato quântico pontual
title_sort Condução eletrônica através de um contato quântico pontual
author Campo Júnior, Vivaldo Leiria
author_facet Campo Júnior, Vivaldo Leiria
author_role author
dc.contributor.none.fl_str_mv Oliveira, Luiz Nunes de
dc.contributor.author.fl_str_mv Campo Júnior, Vivaldo Leiria
dc.subject.por.fl_str_mv AC Conductance
Anderson model
Bloqueio Coulombiano
Condutância AC
Coulomb blockade
Efeito Kondo
Grupo de renormalização
Kondo effect
Modelo de Anderson
Renormalization group
topic AC Conductance
Anderson model
Bloqueio Coulombiano
Condutância AC
Coulomb blockade
Efeito Kondo
Grupo de renormalização
Kondo effect
Modelo de Anderson
Renormalization group
description Neste trabalho é apresentado o cálculo, pelo grupo de renormalização numérico, da condutância AC através de uma nanoestrutura acoplada a gases eletrônicos, a baixa temperatura e no regime de resposta linear. Este sistema apresenta a competição entre dois efeitos: blo¬queio Coulombiano e efeito Kondo. Nosso modelo considera gases eletrônicos unidimensionais que são unidos pelas extremidades para formar um anel, no qual a corrente é induzida por um fluxo magnético oscilante com freqüência . Nós partimos de um modelo tight-binding de vizinhos mais próximos para os gases eletrônicos e, deste modo, o potencial vetor é facilmente incorporado ao Hamiltoniano por condições de contorno torsionais. Uma barreira de potencial entre os gases eletrônicos e a nanoestrutura é simulada em termos de uma taxa de tunelamento entre a nanoestrutura e os sítios adjacentes menor que aquela entre entre sítios vizinhos no anel. A capacitância da nanoestrutura é pequena, o que implica que nós podemos considerar mudanças no número de elétrons dentro da mesma por apenas uma unidade. Como conseqüência, o Hamiltoniano é mapeado no Hamiltoniano de Anderson com correlação U entre os elétrons. Uma voltagem de gate controla a energia da impureza (da nanoestrutura), 0. Plotada como função de , a condutância mostra dois picos característicos do bloqueio Coulombiano, em freqüências correspondentes às energias para adicionar um elétron à nanoestrutura e para remover um elétron da nanoestrutura respectivamente. No regime Kondo, 0 > 0 > -U (ou seja, para voltagens de gate tais que a nanoestrutura isolada teria estado fundamental com degenerescência de spin), um pico (Kondo) adicional aparece próximo à = 0. Plotada como função de Vg, a condutância DC mostra um largo pico no regime Kondo, caindo rapidamente a zero para voltagens resultando em um estado fundamental não degenerado para a nanoestrutura isolada. Uma relação entre a condutância e a densidade espectral do nível da impureza é obtida e utilizada para interpretar os resultados numéricos.
publishDate 1999
dc.date.none.fl_str_mv 1999-04-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76131/tde-15092008-110734/
url http://www.teses.usp.br/teses/disponiveis/76/76131/tde-15092008-110734/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257029294424064