Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia

Detalhes bibliográficos
Autor(a) principal: Rodrigues Neto, Abner Cardoso
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/95/95131/tde-17052016-001503/
Resumo: Redes complexas aplicadas em sinais de atividade cerebral mostraram a presença de anormais padrões de conectividade em pacientes que sofriam com doenças e outros distúrbios psiquiátricos. Logo, passou-se a cogitar a influência dessas estruturas na causa desses problemas e o que leva ao desenvolvimento desses padrões anormais. Do ponto de vista teórico, vários trabalhos mostram como a topologia de uma rede pode alterar um processo que se sustenta nela, por exemplo o modo como a rede influencia a propagação de falhas de um sistema, a sincronização ou processos de dispersão. Nesse sentido, o objetivo do trabalho é caracterizar as redes funcionais de pacientes durante episódios de crises de epilepsia, fazendo um paralelo entre a estrutura dessas redes e os processos dinâmicos envolvidos na crise, em especial a sincronização. Para isto, dados reais foram analisados e as redes inferidas em um primeiro passo. Depois, simulações de sistemas artificiais usando os parâmetros obtidos das análises, mostram o impacto dessas redes nos processos dinâmicos. Os resultados apontam para estruturas que podem aumentar a sincronização e a influência do modo de acoplamento nesses sistemas.
id USP_01e3cb29663bc64691846927f1f29da6
oai_identifier_str oai:teses.usp.br:tde-17052016-001503
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsiaCharacterization and modeling of electrophysiological activity in patients with epilepsyCausalidade de GrangerEEGEEGEpilepsiaEpilepsyGranger causalityProcessamento de sinaisSignal processingRedes complexas aplicadas em sinais de atividade cerebral mostraram a presença de anormais padrões de conectividade em pacientes que sofriam com doenças e outros distúrbios psiquiátricos. Logo, passou-se a cogitar a influência dessas estruturas na causa desses problemas e o que leva ao desenvolvimento desses padrões anormais. Do ponto de vista teórico, vários trabalhos mostram como a topologia de uma rede pode alterar um processo que se sustenta nela, por exemplo o modo como a rede influencia a propagação de falhas de um sistema, a sincronização ou processos de dispersão. Nesse sentido, o objetivo do trabalho é caracterizar as redes funcionais de pacientes durante episódios de crises de epilepsia, fazendo um paralelo entre a estrutura dessas redes e os processos dinâmicos envolvidos na crise, em especial a sincronização. Para isto, dados reais foram analisados e as redes inferidas em um primeiro passo. Depois, simulações de sistemas artificiais usando os parâmetros obtidos das análises, mostram o impacto dessas redes nos processos dinâmicos. Os resultados apontam para estruturas que podem aumentar a sincronização e a influência do modo de acoplamento nesses sistemas.Complex networks applied to brain activity signals show the presence abnormal of connectivity patterns in patients suffering with diseases and others psychiatric disorders. From this, some authors began to question the influence of these structures in the cause of these problems and how it leads to the development of these abnormal patterns. From a theoretical point of view, several studies show how the topology of a network can change a process that maintains it, for example how a network influences the propagation of a system failure, synchronization or diffusion processes. In this sense, the objective of this study is to characterize the functional networks of patients during episodes of seizures, making a parallel between the structure of these networks and the dynamic processes involved in the epilepsy, in particular the synchronization. For this, real data were analyzed and the inferred networks in a first step. And then, artificial simulations using the parameters obtained from the analysis were employed to show the impact of these networks in dynamic processes. The results indicate structures that can enhance the synchronization and the influence of the coupling mode on these systems.Biblioteca Digitais de Teses e Dissertações da USPSameshima, KoichiRodrigues Neto, Abner Cardoso2016-04-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/95/95131/tde-17052016-001503/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:05:35Zoai:teses.usp.br:tde-17052016-001503Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia
Characterization and modeling of electrophysiological activity in patients with epilepsy
title Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia
spellingShingle Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia
Rodrigues Neto, Abner Cardoso
Causalidade de Granger
EEG
EEG
Epilepsia
Epilepsy
Granger causality
Processamento de sinais
Signal processing
title_short Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia
title_full Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia
title_fullStr Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia
title_full_unstemmed Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia
title_sort Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia
author Rodrigues Neto, Abner Cardoso
author_facet Rodrigues Neto, Abner Cardoso
author_role author
dc.contributor.none.fl_str_mv Sameshima, Koichi
dc.contributor.author.fl_str_mv Rodrigues Neto, Abner Cardoso
dc.subject.por.fl_str_mv Causalidade de Granger
EEG
EEG
Epilepsia
Epilepsy
Granger causality
Processamento de sinais
Signal processing
topic Causalidade de Granger
EEG
EEG
Epilepsia
Epilepsy
Granger causality
Processamento de sinais
Signal processing
description Redes complexas aplicadas em sinais de atividade cerebral mostraram a presença de anormais padrões de conectividade em pacientes que sofriam com doenças e outros distúrbios psiquiátricos. Logo, passou-se a cogitar a influência dessas estruturas na causa desses problemas e o que leva ao desenvolvimento desses padrões anormais. Do ponto de vista teórico, vários trabalhos mostram como a topologia de uma rede pode alterar um processo que se sustenta nela, por exemplo o modo como a rede influencia a propagação de falhas de um sistema, a sincronização ou processos de dispersão. Nesse sentido, o objetivo do trabalho é caracterizar as redes funcionais de pacientes durante episódios de crises de epilepsia, fazendo um paralelo entre a estrutura dessas redes e os processos dinâmicos envolvidos na crise, em especial a sincronização. Para isto, dados reais foram analisados e as redes inferidas em um primeiro passo. Depois, simulações de sistemas artificiais usando os parâmetros obtidos das análises, mostram o impacto dessas redes nos processos dinâmicos. Os resultados apontam para estruturas que podem aumentar a sincronização e a influência do modo de acoplamento nesses sistemas.
publishDate 2016
dc.date.none.fl_str_mv 2016-04-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/95/95131/tde-17052016-001503/
url http://www.teses.usp.br/teses/disponiveis/95/95131/tde-17052016-001503/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257036787548160