Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/95/95131/tde-17052016-001503/ |
Resumo: | Redes complexas aplicadas em sinais de atividade cerebral mostraram a presença de anormais padrões de conectividade em pacientes que sofriam com doenças e outros distúrbios psiquiátricos. Logo, passou-se a cogitar a influência dessas estruturas na causa desses problemas e o que leva ao desenvolvimento desses padrões anormais. Do ponto de vista teórico, vários trabalhos mostram como a topologia de uma rede pode alterar um processo que se sustenta nela, por exemplo o modo como a rede influencia a propagação de falhas de um sistema, a sincronização ou processos de dispersão. Nesse sentido, o objetivo do trabalho é caracterizar as redes funcionais de pacientes durante episódios de crises de epilepsia, fazendo um paralelo entre a estrutura dessas redes e os processos dinâmicos envolvidos na crise, em especial a sincronização. Para isto, dados reais foram analisados e as redes inferidas em um primeiro passo. Depois, simulações de sistemas artificiais usando os parâmetros obtidos das análises, mostram o impacto dessas redes nos processos dinâmicos. Os resultados apontam para estruturas que podem aumentar a sincronização e a influência do modo de acoplamento nesses sistemas. |
id |
USP_01e3cb29663bc64691846927f1f29da6 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-17052016-001503 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsiaCharacterization and modeling of electrophysiological activity in patients with epilepsyCausalidade de GrangerEEGEEGEpilepsiaEpilepsyGranger causalityProcessamento de sinaisSignal processingRedes complexas aplicadas em sinais de atividade cerebral mostraram a presença de anormais padrões de conectividade em pacientes que sofriam com doenças e outros distúrbios psiquiátricos. Logo, passou-se a cogitar a influência dessas estruturas na causa desses problemas e o que leva ao desenvolvimento desses padrões anormais. Do ponto de vista teórico, vários trabalhos mostram como a topologia de uma rede pode alterar um processo que se sustenta nela, por exemplo o modo como a rede influencia a propagação de falhas de um sistema, a sincronização ou processos de dispersão. Nesse sentido, o objetivo do trabalho é caracterizar as redes funcionais de pacientes durante episódios de crises de epilepsia, fazendo um paralelo entre a estrutura dessas redes e os processos dinâmicos envolvidos na crise, em especial a sincronização. Para isto, dados reais foram analisados e as redes inferidas em um primeiro passo. Depois, simulações de sistemas artificiais usando os parâmetros obtidos das análises, mostram o impacto dessas redes nos processos dinâmicos. Os resultados apontam para estruturas que podem aumentar a sincronização e a influência do modo de acoplamento nesses sistemas.Complex networks applied to brain activity signals show the presence abnormal of connectivity patterns in patients suffering with diseases and others psychiatric disorders. From this, some authors began to question the influence of these structures in the cause of these problems and how it leads to the development of these abnormal patterns. From a theoretical point of view, several studies show how the topology of a network can change a process that maintains it, for example how a network influences the propagation of a system failure, synchronization or diffusion processes. In this sense, the objective of this study is to characterize the functional networks of patients during episodes of seizures, making a parallel between the structure of these networks and the dynamic processes involved in the epilepsy, in particular the synchronization. For this, real data were analyzed and the inferred networks in a first step. And then, artificial simulations using the parameters obtained from the analysis were employed to show the impact of these networks in dynamic processes. The results indicate structures that can enhance the synchronization and the influence of the coupling mode on these systems.Biblioteca Digitais de Teses e Dissertações da USPSameshima, KoichiRodrigues Neto, Abner Cardoso2016-04-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/95/95131/tde-17052016-001503/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:05:35Zoai:teses.usp.br:tde-17052016-001503Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia Characterization and modeling of electrophysiological activity in patients with epilepsy |
title |
Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia |
spellingShingle |
Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia Rodrigues Neto, Abner Cardoso Causalidade de Granger EEG EEG Epilepsia Epilepsy Granger causality Processamento de sinais Signal processing |
title_short |
Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia |
title_full |
Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia |
title_fullStr |
Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia |
title_full_unstemmed |
Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia |
title_sort |
Caracterização e modelagem da atividade eletrofisiológica em pacientes com epilepsia |
author |
Rodrigues Neto, Abner Cardoso |
author_facet |
Rodrigues Neto, Abner Cardoso |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sameshima, Koichi |
dc.contributor.author.fl_str_mv |
Rodrigues Neto, Abner Cardoso |
dc.subject.por.fl_str_mv |
Causalidade de Granger EEG EEG Epilepsia Epilepsy Granger causality Processamento de sinais Signal processing |
topic |
Causalidade de Granger EEG EEG Epilepsia Epilepsy Granger causality Processamento de sinais Signal processing |
description |
Redes complexas aplicadas em sinais de atividade cerebral mostraram a presença de anormais padrões de conectividade em pacientes que sofriam com doenças e outros distúrbios psiquiátricos. Logo, passou-se a cogitar a influência dessas estruturas na causa desses problemas e o que leva ao desenvolvimento desses padrões anormais. Do ponto de vista teórico, vários trabalhos mostram como a topologia de uma rede pode alterar um processo que se sustenta nela, por exemplo o modo como a rede influencia a propagação de falhas de um sistema, a sincronização ou processos de dispersão. Nesse sentido, o objetivo do trabalho é caracterizar as redes funcionais de pacientes durante episódios de crises de epilepsia, fazendo um paralelo entre a estrutura dessas redes e os processos dinâmicos envolvidos na crise, em especial a sincronização. Para isto, dados reais foram analisados e as redes inferidas em um primeiro passo. Depois, simulações de sistemas artificiais usando os parâmetros obtidos das análises, mostram o impacto dessas redes nos processos dinâmicos. Os resultados apontam para estruturas que podem aumentar a sincronização e a influência do modo de acoplamento nesses sistemas. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/95/95131/tde-17052016-001503/ |
url |
http://www.teses.usp.br/teses/disponiveis/95/95131/tde-17052016-001503/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257036787548160 |