Solid-state biosensors and field-effect transistor devices based on organic semiconductors

Detalhes bibliográficos
Autor(a) principal: Mello, Hugo José Nogueira Pedroza Dias
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-14052019-143910/
Resumo: Biosensors based on solid-state field-effect transistor as transducer stage using organic semiconducting materials as sensing stage have been developed. Polyaniline thin films galvanostatic electrodeposited were fabricated. Varied electrodeposition parameters were tested, such as deposited charge, current density, deposition time and monomer concentration, besides the tests of a polymeric blend composed of polyaniline and polypyrrole and tested as pH potentiometric extended gate field-effect transistor sensor. Then, biosensors were produced using the one-step electrochemical immobilization process to obtain thin polyaniline films with entrapped glucose oxidase and urease enzymes, to detection of glucose and urea, respectively. The optimized films presented sensitivity, linearity and detection range to glucose of 14.6 ± 0.4 mV/decade, 99.8 % and from 10-4 mol/L to 10-1 mol/L. Two different biosensors were produced based on the enzymatic catalysis of urea with selectivity to ammonium or hydroxyl ions. For ammonium ion selective films, the sensor presented sensitivity, linearity and detection range of 14.7 ± 0.9 mV/decade, 98.2 % and from 10-5 mol/L to 10-1 mol/L. For the hydroxyl ion selective film, the same parameters were 7.4 ± 0.5 mV/decade, 98.1 % and from 10-5 mol/L to 10-1 mol/L. The same functionalized polyaniline thin films were used in optical and conductometric biosensors due to the polyelectrochromic characteristic of the material. Improvement of the field-effect system was possible with the multimodal array of enzymatic biosensor. The device was built using different enzymatic sensing stages connected to the extended gate field effect transistor. The system decreased the time needed to make distinct measurements, showed good response to the variation in solutions pH, to the presence of the reference film and to injection of target analyte in solution in real time measurement. The electrolyte gated organic field-effect transistor based on a polythiophene organic semiconducting layer was developed. A modular enzymatic biosensor for glucose and urea, with a linear response in the range between 10-6 and 10-3 mol/L, was achieved. This biosensor relies on the immobilization the enzymes on gold rods, used as gate electrodes in the devices. The use of the bioreceptors proved to be selective and cross-selective in the devices. The possibility of exchanging the modified gate electrode to detect specific analytes using the same device system allows the modular sensor to be reused and applied for a broad range of applications. Which is the case for explosives molecules, TNT and DNT, biosensor fabricated in the same terms. This biosensor relies on the immobilization of specific binding peptides for TNT and DNT on the gold rod
id USP_031b772abaf056a2e4ef852be2d2ea5a
oai_identifier_str oai:teses.usp.br:tde-14052019-143910
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Solid-state biosensors and field-effect transistor devices based on organic semiconductorsBiossensores do estado sólido e dispositivos transistores de efeito de campo fabricados com semicondutores orgânicosBioreceptoresBioreceptorsConducting polymersEletrônica orgânicaOrganic electronicPolímeros condutoresSensoresSensorsBiosensors based on solid-state field-effect transistor as transducer stage using organic semiconducting materials as sensing stage have been developed. Polyaniline thin films galvanostatic electrodeposited were fabricated. Varied electrodeposition parameters were tested, such as deposited charge, current density, deposition time and monomer concentration, besides the tests of a polymeric blend composed of polyaniline and polypyrrole and tested as pH potentiometric extended gate field-effect transistor sensor. Then, biosensors were produced using the one-step electrochemical immobilization process to obtain thin polyaniline films with entrapped glucose oxidase and urease enzymes, to detection of glucose and urea, respectively. The optimized films presented sensitivity, linearity and detection range to glucose of 14.6 ± 0.4 mV/decade, 99.8 % and from 10-4 mol/L to 10-1 mol/L. Two different biosensors were produced based on the enzymatic catalysis of urea with selectivity to ammonium or hydroxyl ions. For ammonium ion selective films, the sensor presented sensitivity, linearity and detection range of 14.7 ± 0.9 mV/decade, 98.2 % and from 10-5 mol/L to 10-1 mol/L. For the hydroxyl ion selective film, the same parameters were 7.4 ± 0.5 mV/decade, 98.1 % and from 10-5 mol/L to 10-1 mol/L. The same functionalized polyaniline thin films were used in optical and conductometric biosensors due to the polyelectrochromic characteristic of the material. Improvement of the field-effect system was possible with the multimodal array of enzymatic biosensor. The device was built using different enzymatic sensing stages connected to the extended gate field effect transistor. The system decreased the time needed to make distinct measurements, showed good response to the variation in solutions pH, to the presence of the reference film and to injection of target analyte in solution in real time measurement. The electrolyte gated organic field-effect transistor based on a polythiophene organic semiconducting layer was developed. A modular enzymatic biosensor for glucose and urea, with a linear response in the range between 10-6 and 10-3 mol/L, was achieved. This biosensor relies on the immobilization the enzymes on gold rods, used as gate electrodes in the devices. The use of the bioreceptors proved to be selective and cross-selective in the devices. The possibility of exchanging the modified gate electrode to detect specific analytes using the same device system allows the modular sensor to be reused and applied for a broad range of applications. Which is the case for explosives molecules, TNT and DNT, biosensor fabricated in the same terms. This biosensor relies on the immobilization of specific binding peptides for TNT and DNT on the gold rodBiossensores do estado sólido baseados em transistores de efeito de campo como estágio transdutor fabricados com materiais semicondutores orgânicos como estágio de detecção foram desenvolvidos. Filmes finos de polianilina eletrodepositados galvanostaticamente foram fabricados. Parâmetros de eletrodeposição foram testados, como carga depositada, densidade de corrente, tempo de deposição e concentração de monômero, além de testes com compósito polimérico de polianilina e polipirrol e aplicados como sensor de transistor de efeito de campo de porta estendida potenciométrica de pH. Em seguida, os biossensores foram produzidos utilizando-se o processo de imobilização eletroquímica conjunta para obtenção de filmes finos de polianilina com enzimas glicose oxidase e urease imobilizadas, para detecção de glicose e ureia, respectivamente. Os filmes otimizados apresentaram sensibilidade, linearidade e faixa de detecção para glicose de 14,6 ± 0,4 mV/década, 99,8% e de 10-4 a 10-1 mol/L. Dois biossensores diferentes foram produzidos a partir da catálise enzimática da ureia com seletividade para íons amônio ou hidroxila. Para filmes seletivos ao íon amônio, o sensor apresentou sensibilidade, linearidade e faixa de detecção de 14,7 ± 0,9 mV/década, 98,2% e de 10-5 a 10-1 mol/L. Para o filme seletivo ao íon hidroxila, os mesmos parâmetros foram 7,4 ± 0,5 mV/década, 98,1% e de 10-5 a 10-1 mol/L. Os mesmos filmes finos de polianilina funcionalizados foram utilizados em biossensores ópticos e condutométricos devido à característica polieletrocromática do material. A melhoria do sistema foi possível com o arranjo multimodal do biossensor enzimático. O dispositivo foi construído usando diferentes estágios de detecção enzimática conectados ao transistor de efeito de campo de porta estendido. O sistema diminuiu o tempo necessário para fazer medições distintas, mostrou boa resposta à variação no pH da solução, à presença do filme de referência e à injeção do analito alvo em solução na medição em tempo real. Foi desenvolvido o transistor orgânico de efeito de campo com porta eletrolítica, baseado em uma camada semicondutora orgânica de politiofeno. Um biossensor enzimático modular para glicose e ureia, com uma resposta linear na faixa entre 10-6 e 10-3 mol/L, foi alcançado. Este biossensor depende da imobilização das enzimas no eletrodo ouro utilizado como porta nos dispositivos. O uso dos bioreceptores mostrou-se seletivo nos dispositivos. A possibilidade de trocar o eletrodo de porta modificada para detectar analitos específicos usando o mesmo sistema de dispositivos permite que o sensor modular seja reutilizado e com diversas aplicações. Sendo este o caso de moléculas de explosivos, TNT e DNT, com biossensor fabricado nos mesmos termos. Este biossensor depende da imobilização de peptídeos de ligação específica para TNT e DNT no eletrodo de ouroBiblioteca Digitais de Teses e Dissertações da USPMulato, MarceloMello, Hugo José Nogueira Pedroza Dias2019-03-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/59/59135/tde-14052019-143910/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-07-04T17:56:12Zoai:teses.usp.br:tde-14052019-143910Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-07-04T17:56:12Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Solid-state biosensors and field-effect transistor devices based on organic semiconductors
Biossensores do estado sólido e dispositivos transistores de efeito de campo fabricados com semicondutores orgânicos
title Solid-state biosensors and field-effect transistor devices based on organic semiconductors
spellingShingle Solid-state biosensors and field-effect transistor devices based on organic semiconductors
Mello, Hugo José Nogueira Pedroza Dias
Bioreceptores
Bioreceptors
Conducting polymers
Eletrônica orgânica
Organic electronic
Polímeros condutores
Sensores
Sensors
title_short Solid-state biosensors and field-effect transistor devices based on organic semiconductors
title_full Solid-state biosensors and field-effect transistor devices based on organic semiconductors
title_fullStr Solid-state biosensors and field-effect transistor devices based on organic semiconductors
title_full_unstemmed Solid-state biosensors and field-effect transistor devices based on organic semiconductors
title_sort Solid-state biosensors and field-effect transistor devices based on organic semiconductors
author Mello, Hugo José Nogueira Pedroza Dias
author_facet Mello, Hugo José Nogueira Pedroza Dias
author_role author
dc.contributor.none.fl_str_mv Mulato, Marcelo
dc.contributor.author.fl_str_mv Mello, Hugo José Nogueira Pedroza Dias
dc.subject.por.fl_str_mv Bioreceptores
Bioreceptors
Conducting polymers
Eletrônica orgânica
Organic electronic
Polímeros condutores
Sensores
Sensors
topic Bioreceptores
Bioreceptors
Conducting polymers
Eletrônica orgânica
Organic electronic
Polímeros condutores
Sensores
Sensors
description Biosensors based on solid-state field-effect transistor as transducer stage using organic semiconducting materials as sensing stage have been developed. Polyaniline thin films galvanostatic electrodeposited were fabricated. Varied electrodeposition parameters were tested, such as deposited charge, current density, deposition time and monomer concentration, besides the tests of a polymeric blend composed of polyaniline and polypyrrole and tested as pH potentiometric extended gate field-effect transistor sensor. Then, biosensors were produced using the one-step electrochemical immobilization process to obtain thin polyaniline films with entrapped glucose oxidase and urease enzymes, to detection of glucose and urea, respectively. The optimized films presented sensitivity, linearity and detection range to glucose of 14.6 ± 0.4 mV/decade, 99.8 % and from 10-4 mol/L to 10-1 mol/L. Two different biosensors were produced based on the enzymatic catalysis of urea with selectivity to ammonium or hydroxyl ions. For ammonium ion selective films, the sensor presented sensitivity, linearity and detection range of 14.7 ± 0.9 mV/decade, 98.2 % and from 10-5 mol/L to 10-1 mol/L. For the hydroxyl ion selective film, the same parameters were 7.4 ± 0.5 mV/decade, 98.1 % and from 10-5 mol/L to 10-1 mol/L. The same functionalized polyaniline thin films were used in optical and conductometric biosensors due to the polyelectrochromic characteristic of the material. Improvement of the field-effect system was possible with the multimodal array of enzymatic biosensor. The device was built using different enzymatic sensing stages connected to the extended gate field effect transistor. The system decreased the time needed to make distinct measurements, showed good response to the variation in solutions pH, to the presence of the reference film and to injection of target analyte in solution in real time measurement. The electrolyte gated organic field-effect transistor based on a polythiophene organic semiconducting layer was developed. A modular enzymatic biosensor for glucose and urea, with a linear response in the range between 10-6 and 10-3 mol/L, was achieved. This biosensor relies on the immobilization the enzymes on gold rods, used as gate electrodes in the devices. The use of the bioreceptors proved to be selective and cross-selective in the devices. The possibility of exchanging the modified gate electrode to detect specific analytes using the same device system allows the modular sensor to be reused and applied for a broad range of applications. Which is the case for explosives molecules, TNT and DNT, biosensor fabricated in the same terms. This biosensor relies on the immobilization of specific binding peptides for TNT and DNT on the gold rod
publishDate 2019
dc.date.none.fl_str_mv 2019-03-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/59/59135/tde-14052019-143910/
url http://www.teses.usp.br/teses/disponiveis/59/59135/tde-14052019-143910/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090709562589184