Photolyase production and nanoencapsulation for topical applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/9/9135/tde-22072024-094811/ |
Resumo: | Ultraviolet (UV) radiation from sunlight can induce DNA damage, leading to the formation of photoproducts that can eventually result in skin cancer. Topical application of DNA repair enzymes, such as photolyase, represents an innovative strategy for active photoprotection. In this sense, photolyase nanoencapsulation offers a promising route to facilitate the access of enzymes to the deeper layers of the skin. This work aimed to produce the recombinant photolyase, characterize it, and investigate nanostructures for the enzyme encapsulation, namely polymersomes (PL), liposomes (LP) and polymeric nanoparticles (PNP). Photolyase production by recombinant E. coli was investigated in metabolic shaker and batch and fed-batch bioreactors. After extraction and purification by affinity chromatography, the photolyase exhibited a molecular weight of 47 kDa with a yield of 480 mg of pure protein per liter of fed-batch culture. Very low photolyase concentrations, such as 15 µg/mL, already presented 90% of CPD repair in DNA samples in vitro. Subsequently, nanostructures were developed based on design of experiments (DoE) to optimize the hydrodynamic diameter (Dh) and encapsulation efficiency (EE). Nanometric values of Dh were obtained for all nanostructures. EE of 23% was achieved for both PL and LP, and >90% for PNP. PL exhibited the best enzyme release profile to the external medium over time (up to 35% after 24h), while PNP presented the lowest release reaching only ≈15% after 10 days. Based on in vitro cytotoxicity studies, PL, LP and PNP were classified as non-irritating material. Finally, both free and photolyaseloaded PL and LP were able to protect cells from UV radiation, resulting in cell viability recoveries of 37% for the free enzyme and 50-60% when nanoencapsulated, compared to 28% without the enzyme. Overall, our study demonstrates efficient production of T. thermophilus photolyase and the enzyme ability to repair CPD damage, particularly when encapsulated in PL, offering a promising and innovative alternative as an active ingredient for incorporation into dermatological products. |
id |
USP_0512f4efcaa7d7dc3c421fdcd190f28f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-22072024-094811 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Photolyase production and nanoencapsulation for topical applicationsProdução e nanoencapsulação da fotoliase para aplicações tópicasBiorreator de batelada alimentadaFed-batch bioreactorFotoliaseLiposomeLlipossomaNanopartículas poliméricasPhotolyasePolimerossomaPolymeric nanoparticlePolymersomeUltraviolet (UV) radiation from sunlight can induce DNA damage, leading to the formation of photoproducts that can eventually result in skin cancer. Topical application of DNA repair enzymes, such as photolyase, represents an innovative strategy for active photoprotection. In this sense, photolyase nanoencapsulation offers a promising route to facilitate the access of enzymes to the deeper layers of the skin. This work aimed to produce the recombinant photolyase, characterize it, and investigate nanostructures for the enzyme encapsulation, namely polymersomes (PL), liposomes (LP) and polymeric nanoparticles (PNP). Photolyase production by recombinant E. coli was investigated in metabolic shaker and batch and fed-batch bioreactors. After extraction and purification by affinity chromatography, the photolyase exhibited a molecular weight of 47 kDa with a yield of 480 mg of pure protein per liter of fed-batch culture. Very low photolyase concentrations, such as 15 µg/mL, already presented 90% of CPD repair in DNA samples in vitro. Subsequently, nanostructures were developed based on design of experiments (DoE) to optimize the hydrodynamic diameter (Dh) and encapsulation efficiency (EE). Nanometric values of Dh were obtained for all nanostructures. EE of 23% was achieved for both PL and LP, and >90% for PNP. PL exhibited the best enzyme release profile to the external medium over time (up to 35% after 24h), while PNP presented the lowest release reaching only ≈15% after 10 days. Based on in vitro cytotoxicity studies, PL, LP and PNP were classified as non-irritating material. Finally, both free and photolyaseloaded PL and LP were able to protect cells from UV radiation, resulting in cell viability recoveries of 37% for the free enzyme and 50-60% when nanoencapsulated, compared to 28% without the enzyme. Overall, our study demonstrates efficient production of T. thermophilus photolyase and the enzyme ability to repair CPD damage, particularly when encapsulated in PL, offering a promising and innovative alternative as an active ingredient for incorporation into dermatological products.A radiação ultravioleta (UV) da luz solar pode induzir danos ao DNA, levando à formação de fotoprodutos que podem, eventualmente, resultar em câncer de pele. A aplicação tópica de enzimas reparadoras de DNA, como a fotoliase, representa uma estratégia inovadora para fotoproteção ativa. Nesse sentido, a nanoencapsulação da fotoliase oferece alternativa promissora para facilitar o acesso da enzima às camadas mais profundas da pele. Este projeto teve como objetivo produzir uma fotoliase recombinante, caracterizá-la e nanoencapsular a enzima em polimerossomas (PL), lipossomas (LP) e nanopartículas poliméricas (PNP). A fotoliase foi produzida por E. coli recombinante em processos conduzidos em agitador metabólico e biorreatores descontínuos e alimentados. Após extração e purificação por cromatografia de afinidade, a fotoliase exibiu massa molecular de 47 kDa com um rendimento de 480 mg de proteína pura por litro de cultura em batelada alimentada. Concentrações muito baixas de fotoliase, como 15 µg/mL, apresentaram 90% de reparo de CPD em amostras de DNA in vitro. Posteriormente, nanoestruturas foram desenvolvidas usando estratégias de planejamento de experimentos (DoE) para otimizar o diâmetro hidrodinâmico (Dh) e a eficiência de encapsulamento (EE). Valores nanométricos de Dh foram obtidos para todas as nanoestruturas. EE de 23% foram alcançados para PL e LP, e >90% para PNP. Os PL exibiram a melhor liberação da enzima ao longo do tempo (até 35% após 24h), sendo que as PNP apresentaram a menor taxa de liberação atingindo somente ≈ 15% após 10 dias. Baseados em estudos de citotoxicidade in vitro, os PL, LP e PNP foram classificados como materiais não irritantes. Finalmente, tanto a fotoliase livre quanto a encapsulada em PL e LP foi capaz de proteger as células da radiação UV, resultando em viabilidades celulares de 37% para a enzima livre e 50-60% na forma nanoencapsulada, comparado a 28% de viabilidade sem o tratamento com a enzima. No geral, nosso estudo demonstra a produção eficiente da fotoliase de T. thermophilus e sua capacidade em reparar danos de CPD, principalmente quando encapsulada em PL, oferecendo uma alternativa promissora e inovadora como ingrediente ativo para incorporação em produtos dermatológicos.Biblioteca Digitais de Teses e Dissertações da USPRangel-Yagui, Carlota de OliveiraTorres-Obreque, Karin Mariana Torres2024-06-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/9/9135/tde-22072024-094811/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPReter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.info:eu-repo/semantics/openAccesseng2024-07-23T20:10:02Zoai:teses.usp.br:tde-22072024-094811Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-07-23T20:10:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Photolyase production and nanoencapsulation for topical applications Produção e nanoencapsulação da fotoliase para aplicações tópicas |
title |
Photolyase production and nanoencapsulation for topical applications |
spellingShingle |
Photolyase production and nanoencapsulation for topical applications Torres-Obreque, Karin Mariana Torres Biorreator de batelada alimentada Fed-batch bioreactor Fotoliase Liposome Llipossoma Nanopartículas poliméricas Photolyase Polimerossoma Polymeric nanoparticle Polymersome |
title_short |
Photolyase production and nanoencapsulation for topical applications |
title_full |
Photolyase production and nanoencapsulation for topical applications |
title_fullStr |
Photolyase production and nanoencapsulation for topical applications |
title_full_unstemmed |
Photolyase production and nanoencapsulation for topical applications |
title_sort |
Photolyase production and nanoencapsulation for topical applications |
author |
Torres-Obreque, Karin Mariana Torres |
author_facet |
Torres-Obreque, Karin Mariana Torres |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rangel-Yagui, Carlota de Oliveira |
dc.contributor.author.fl_str_mv |
Torres-Obreque, Karin Mariana Torres |
dc.subject.por.fl_str_mv |
Biorreator de batelada alimentada Fed-batch bioreactor Fotoliase Liposome Llipossoma Nanopartículas poliméricas Photolyase Polimerossoma Polymeric nanoparticle Polymersome |
topic |
Biorreator de batelada alimentada Fed-batch bioreactor Fotoliase Liposome Llipossoma Nanopartículas poliméricas Photolyase Polimerossoma Polymeric nanoparticle Polymersome |
description |
Ultraviolet (UV) radiation from sunlight can induce DNA damage, leading to the formation of photoproducts that can eventually result in skin cancer. Topical application of DNA repair enzymes, such as photolyase, represents an innovative strategy for active photoprotection. In this sense, photolyase nanoencapsulation offers a promising route to facilitate the access of enzymes to the deeper layers of the skin. This work aimed to produce the recombinant photolyase, characterize it, and investigate nanostructures for the enzyme encapsulation, namely polymersomes (PL), liposomes (LP) and polymeric nanoparticles (PNP). Photolyase production by recombinant E. coli was investigated in metabolic shaker and batch and fed-batch bioreactors. After extraction and purification by affinity chromatography, the photolyase exhibited a molecular weight of 47 kDa with a yield of 480 mg of pure protein per liter of fed-batch culture. Very low photolyase concentrations, such as 15 µg/mL, already presented 90% of CPD repair in DNA samples in vitro. Subsequently, nanostructures were developed based on design of experiments (DoE) to optimize the hydrodynamic diameter (Dh) and encapsulation efficiency (EE). Nanometric values of Dh were obtained for all nanostructures. EE of 23% was achieved for both PL and LP, and >90% for PNP. PL exhibited the best enzyme release profile to the external medium over time (up to 35% after 24h), while PNP presented the lowest release reaching only ≈15% after 10 days. Based on in vitro cytotoxicity studies, PL, LP and PNP were classified as non-irritating material. Finally, both free and photolyaseloaded PL and LP were able to protect cells from UV radiation, resulting in cell viability recoveries of 37% for the free enzyme and 50-60% when nanoencapsulated, compared to 28% without the enzyme. Overall, our study demonstrates efficient production of T. thermophilus photolyase and the enzyme ability to repair CPD damage, particularly when encapsulated in PL, offering a promising and innovative alternative as an active ingredient for incorporation into dermatological products. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/9/9135/tde-22072024-094811/ |
url |
https://www.teses.usp.br/teses/disponiveis/9/9135/tde-22072024-094811/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257275722366976 |