Mapas randômicos e espalhamento caótico não-hiperbólico

Detalhes bibliográficos
Autor(a) principal: Camargo, Sabrina
Data de Publicação: 2005
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-08052009-145055/
Resumo: Num problema de espalhamento temos partículas incidentes sobre uma região de espalhamento que, depois de interagir por algum tempo nessa região, escapam para o infinito. Quando o espalhamento é caótico, a função de espalhamento (que é a relação entre uma variável antes do espalhamento e outra variável depois do espalhamento), apresenta singularidades sobre um conjunto de Cantor de condições iniciais. O espalhamento caótico pode ser dividido em dois tipos: espalhamento não-hiperbólico e hiperbólico. No espalhamento não-hiperbólico, o conjunto invariante contém órbitas estáveis. O decaimento das partículas que escapam do conjunto invariante é regido por uma lei de potência com relação ao tempo. No caso do espalhamento hiperbólico, a sela caótica é hiperbólica e todas as órbitas que a compõem são instáveis. O decaimento das partículas na região de espalhamento segue uma exponencial decrescente. Investigamos a transição do espalhamento não-hiperbólico para o hiperbólico quando ruído é adicionado à dinâmica do sistema. Isto porque prevíamos que o ruído reduzisse o efeito de aprisionamento (stickness) dos conjuntos de órbitas estáveis, provocando um decaimento exponencial. Introduzimos perturbações randômicas a fim de simular flutuações reais que ocorrem em sistemas físicos, como por exemplo, um vórtex que depende irregularmente do tempo no estudo de fluidos. Assim, usamos o conceito de mapas randômicos, que são mapas onde um ou mais parâmetros são variados aleatoriamente a cada iteração. Estudamos então, os efeitos provocados por perturbações randômicas em um sistema com espalhamento caótico não-hiperbólico.
id USP_0522a0b8083f792ceb01116a17b6197b
oai_identifier_str oai:teses.usp.br:tde-08052009-145055
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Mapas randômicos e espalhamento caótico não-hiperbólicoRandom maps and non-hyperbolic chaotic scatteringchaotic scatteringespalhamento caóticomapas randômicosrandom mapsNum problema de espalhamento temos partículas incidentes sobre uma região de espalhamento que, depois de interagir por algum tempo nessa região, escapam para o infinito. Quando o espalhamento é caótico, a função de espalhamento (que é a relação entre uma variável antes do espalhamento e outra variável depois do espalhamento), apresenta singularidades sobre um conjunto de Cantor de condições iniciais. O espalhamento caótico pode ser dividido em dois tipos: espalhamento não-hiperbólico e hiperbólico. No espalhamento não-hiperbólico, o conjunto invariante contém órbitas estáveis. O decaimento das partículas que escapam do conjunto invariante é regido por uma lei de potência com relação ao tempo. No caso do espalhamento hiperbólico, a sela caótica é hiperbólica e todas as órbitas que a compõem são instáveis. O decaimento das partículas na região de espalhamento segue uma exponencial decrescente. Investigamos a transição do espalhamento não-hiperbólico para o hiperbólico quando ruído é adicionado à dinâmica do sistema. Isto porque prevíamos que o ruído reduzisse o efeito de aprisionamento (stickness) dos conjuntos de órbitas estáveis, provocando um decaimento exponencial. Introduzimos perturbações randômicas a fim de simular flutuações reais que ocorrem em sistemas físicos, como por exemplo, um vórtex que depende irregularmente do tempo no estudo de fluidos. Assim, usamos o conceito de mapas randômicos, que são mapas onde um ou mais parâmetros são variados aleatoriamente a cada iteração. Estudamos então, os efeitos provocados por perturbações randômicas em um sistema com espalhamento caótico não-hiperbólico.In a scattering problem we have particles inciding on a scattering region and these particles, after spending some time in this region, escape towards infinity. When the scattering is chaotic, the scattering function (a function that relates an input variable with an output variable), is singular on a Cantor set of initial conditions. The chaotic scattering can be either non-hyperbolic or hyperbolic. In the non-hyperbolic scattering, the invariant set has stable orbits. This decay is governed by a power law in time. In the hyperbolic case, the chaotic saddle is hyperbolic and all the orbits are unstable. The decay of the particles is a decreasing exponential in the time. We investigate the transition from non-hyperbolic to hyperbolic scattering as noise is added to the system. One expects that noise will reduce the stickness of the regular regions, resulting in an exponential decay law, typical of hyperbolic systems. We apply random perturbations in order to simulate the real fluctuations that occur in physical systems, for example, an aperiodic vortex in a fluid flow. So, we work with random maps, where we change randomly one or more parameters on each iteration. We study thus, the effects of the random perturbations on a system having non-hyperbolic scattering.Biblioteca Digitais de Teses e Dissertações da USPGrebogi, CelsoCamargo, Sabrina2005-09-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-08052009-145055/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:03Zoai:teses.usp.br:tde-08052009-145055Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Mapas randômicos e espalhamento caótico não-hiperbólico
Random maps and non-hyperbolic chaotic scattering
title Mapas randômicos e espalhamento caótico não-hiperbólico
spellingShingle Mapas randômicos e espalhamento caótico não-hiperbólico
Camargo, Sabrina
chaotic scattering
espalhamento caótico
mapas randômicos
random maps
title_short Mapas randômicos e espalhamento caótico não-hiperbólico
title_full Mapas randômicos e espalhamento caótico não-hiperbólico
title_fullStr Mapas randômicos e espalhamento caótico não-hiperbólico
title_full_unstemmed Mapas randômicos e espalhamento caótico não-hiperbólico
title_sort Mapas randômicos e espalhamento caótico não-hiperbólico
author Camargo, Sabrina
author_facet Camargo, Sabrina
author_role author
dc.contributor.none.fl_str_mv Grebogi, Celso
dc.contributor.author.fl_str_mv Camargo, Sabrina
dc.subject.por.fl_str_mv chaotic scattering
espalhamento caótico
mapas randômicos
random maps
topic chaotic scattering
espalhamento caótico
mapas randômicos
random maps
description Num problema de espalhamento temos partículas incidentes sobre uma região de espalhamento que, depois de interagir por algum tempo nessa região, escapam para o infinito. Quando o espalhamento é caótico, a função de espalhamento (que é a relação entre uma variável antes do espalhamento e outra variável depois do espalhamento), apresenta singularidades sobre um conjunto de Cantor de condições iniciais. O espalhamento caótico pode ser dividido em dois tipos: espalhamento não-hiperbólico e hiperbólico. No espalhamento não-hiperbólico, o conjunto invariante contém órbitas estáveis. O decaimento das partículas que escapam do conjunto invariante é regido por uma lei de potência com relação ao tempo. No caso do espalhamento hiperbólico, a sela caótica é hiperbólica e todas as órbitas que a compõem são instáveis. O decaimento das partículas na região de espalhamento segue uma exponencial decrescente. Investigamos a transição do espalhamento não-hiperbólico para o hiperbólico quando ruído é adicionado à dinâmica do sistema. Isto porque prevíamos que o ruído reduzisse o efeito de aprisionamento (stickness) dos conjuntos de órbitas estáveis, provocando um decaimento exponencial. Introduzimos perturbações randômicas a fim de simular flutuações reais que ocorrem em sistemas físicos, como por exemplo, um vórtex que depende irregularmente do tempo no estudo de fluidos. Assim, usamos o conceito de mapas randômicos, que são mapas onde um ou mais parâmetros são variados aleatoriamente a cada iteração. Estudamos então, os efeitos provocados por perturbações randômicas em um sistema com espalhamento caótico não-hiperbólico.
publishDate 2005
dc.date.none.fl_str_mv 2005-09-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-08052009-145055/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-08052009-145055/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256800127090688