Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11134/tde-28062011-095106/ |
Resumo: | Neste trabalho, alguns resultados, tais como, função geradora de momentos, relações de recorrência para os momentos e alguns teoremas da classe de distribuições em séries de potencias modificadas (MPSD) proposta por Gupta (1974) e da classe de distribuições em séries de potências modificadas inflacionadas (IMPSD) tanto em um ponto diferente de zero como no ponto zero são apresentados. Uma aplicação do Modelo Poisson padrão, do modelo binomial negativo padrão e dos modelos inflacionados de zeros para dados de contagem, ZIP e ZINB, utilizando-se as técnicas dos MLGs, foi realizada para dois conjuntos de dados reais juntamente com o gráfico normal de probabilidade com envelopes simulados. Também foi proposta a distribuição Weibull binomial negativa (WNB) que é bastante flexível em análise de dados positivos e foram estudadas algumas de suas propriedades matemáticas. Esta é uma importante alternativa para os modelos Weibull e Weibull geométrica, sub-modelos da WNB. A demostração de que a densidade da distribuição Weibull binomial negativa pode ser expressa como uma mistura de densidades Weibull é apresentada. Fornecem-se, também, seus momentos, função geradora de momentos, gráficos da assimetria e curtose, expressoes expl´citas para os desvios médios, curvas de Bonferroni e Lorenz, função quantílica, confiabilidade e entropia, a densidade da estat´stica de ordem e expressões explícita para os momentos da estatística de ordem. O método de máxima verossimilhança é usado para estimar os parametros do modelo. A matriz de informação esperada ´e derivada. A utilidade da distribuição WNB está ilustrada na an´alise de dois conjuntos de dados reais. |
id |
USP_053fab9f2ff251db63c236a97a2970c2 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-28062011-095106 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativaInflated modified power serie distribution and Weibull negative binomialBinomial distributionDistribuição binomialDistribuição de PoissonDistribuições (Probabilidade)Distributions (Probability)EstatisticEstatísticaLikelihood.Poisson distributionVerossimilhança.Neste trabalho, alguns resultados, tais como, função geradora de momentos, relações de recorrência para os momentos e alguns teoremas da classe de distribuições em séries de potencias modificadas (MPSD) proposta por Gupta (1974) e da classe de distribuições em séries de potências modificadas inflacionadas (IMPSD) tanto em um ponto diferente de zero como no ponto zero são apresentados. Uma aplicação do Modelo Poisson padrão, do modelo binomial negativo padrão e dos modelos inflacionados de zeros para dados de contagem, ZIP e ZINB, utilizando-se as técnicas dos MLGs, foi realizada para dois conjuntos de dados reais juntamente com o gráfico normal de probabilidade com envelopes simulados. Também foi proposta a distribuição Weibull binomial negativa (WNB) que é bastante flexível em análise de dados positivos e foram estudadas algumas de suas propriedades matemáticas. Esta é uma importante alternativa para os modelos Weibull e Weibull geométrica, sub-modelos da WNB. A demostração de que a densidade da distribuição Weibull binomial negativa pode ser expressa como uma mistura de densidades Weibull é apresentada. Fornecem-se, também, seus momentos, função geradora de momentos, gráficos da assimetria e curtose, expressoes expl´citas para os desvios médios, curvas de Bonferroni e Lorenz, função quantílica, confiabilidade e entropia, a densidade da estat´stica de ordem e expressões explícita para os momentos da estatística de ordem. O método de máxima verossimilhança é usado para estimar os parametros do modelo. A matriz de informação esperada ´e derivada. A utilidade da distribuição WNB está ilustrada na an´alise de dois conjuntos de dados reais.In this paper, some result such as moments generating function, recurrence relations for moments and some theorems of the class of modified power series distributions (MPSD) proposed by Gupta (1974) and of the class of inflated modified power series distributions (IMPSD) both at a different point of zero as the zero point are presented. The standard Poisson model, the standard negative binomial model and zero inflated models for count data, ZIP and ZINB, using the techniques of the GLMs, were used to analyse two real data sets together with the normal plot with simulated envelopes. The new distribution Weibull negative binomial (WNB) was proposed. Some mathematical properties of the WNB distribution which is quite flexible in analyzing positive data were studied. It is an important alternative model to the Weibull, and Weibull geometric distributions as they are sub-models of WNB. We demonstrate that the WNB density can be expressed as a mixture of Weibull densities. We provide their moments, moment generating function, plots of the skewness and kurtosis, explicit expressions for the mean deviations, Bonferroni and Lorenz curves, quantile function, reliability and entropy, the density of order statistics and explicit expressions for the moments of order statistics. The method of maximum likelihood is used for estimating the model parameters. The expected information matrix is derived. The usefulness of the new distribution is illustrated in two analysis of real data sets.Biblioteca Digitais de Teses e Dissertações da USPDemetrio, Clarice Garcia BorgesRodrigues, Cristiane2011-06-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-28062011-095106/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:29Zoai:teses.usp.br:tde-28062011-095106Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:29Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa Inflated modified power serie distribution and Weibull negative binomial |
title |
Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa |
spellingShingle |
Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa Rodrigues, Cristiane Binomial distribution Distribuição binomial Distribuição de Poisson Distribuições (Probabilidade) Distributions (Probability) Estatistic Estatística Likelihood. Poisson distribution Verossimilhança. |
title_short |
Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa |
title_full |
Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa |
title_fullStr |
Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa |
title_full_unstemmed |
Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa |
title_sort |
Distribuições em série de potências modificadas inflacionadas e distribuição Weibull binominal negativa |
author |
Rodrigues, Cristiane |
author_facet |
Rodrigues, Cristiane |
author_role |
author |
dc.contributor.none.fl_str_mv |
Demetrio, Clarice Garcia Borges |
dc.contributor.author.fl_str_mv |
Rodrigues, Cristiane |
dc.subject.por.fl_str_mv |
Binomial distribution Distribuição binomial Distribuição de Poisson Distribuições (Probabilidade) Distributions (Probability) Estatistic Estatística Likelihood. Poisson distribution Verossimilhança. |
topic |
Binomial distribution Distribuição binomial Distribuição de Poisson Distribuições (Probabilidade) Distributions (Probability) Estatistic Estatística Likelihood. Poisson distribution Verossimilhança. |
description |
Neste trabalho, alguns resultados, tais como, função geradora de momentos, relações de recorrência para os momentos e alguns teoremas da classe de distribuições em séries de potencias modificadas (MPSD) proposta por Gupta (1974) e da classe de distribuições em séries de potências modificadas inflacionadas (IMPSD) tanto em um ponto diferente de zero como no ponto zero são apresentados. Uma aplicação do Modelo Poisson padrão, do modelo binomial negativo padrão e dos modelos inflacionados de zeros para dados de contagem, ZIP e ZINB, utilizando-se as técnicas dos MLGs, foi realizada para dois conjuntos de dados reais juntamente com o gráfico normal de probabilidade com envelopes simulados. Também foi proposta a distribuição Weibull binomial negativa (WNB) que é bastante flexível em análise de dados positivos e foram estudadas algumas de suas propriedades matemáticas. Esta é uma importante alternativa para os modelos Weibull e Weibull geométrica, sub-modelos da WNB. A demostração de que a densidade da distribuição Weibull binomial negativa pode ser expressa como uma mistura de densidades Weibull é apresentada. Fornecem-se, também, seus momentos, função geradora de momentos, gráficos da assimetria e curtose, expressoes expl´citas para os desvios médios, curvas de Bonferroni e Lorenz, função quantílica, confiabilidade e entropia, a densidade da estat´stica de ordem e expressões explícita para os momentos da estatística de ordem. O método de máxima verossimilhança é usado para estimar os parametros do modelo. A matriz de informação esperada ´e derivada. A utilidade da distribuição WNB está ilustrada na an´alise de dois conjuntos de dados reais. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-28062011-095106/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-28062011-095106/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257434542833664 |