Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrast
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/59/59135/tde-27092019-094346/ |
Resumo: | Magnetic nanoparticles have been proven as great promising material for biology and medicine applications including protein purification, bacterial detection, drug delivery, hypertherrnia and imaging techniques such as magnetic resonance imaging (MRI), position emission tomography (PET), single photon emission computed tomography (SPECT), optical imaging and magnetic particle imaging and magnetic particle imaging. Recently several researchers have been developing magnetomotive ultrasound imaging (MMUS) as an imaging technique to improve the sensitivity of ultrasound to detect magnetic nanoparticles. In this technique (MMUS), an external magnetic excitation is applied in order to induce a motion within tissue labeled with magnetic nanoparticles and the backscattered ultrasound radio frequency (RF) waves are used to localize and image the magnetically induced motions within tissue. These vibrations, in order of micro meters, are originated from the interaction of the particles with an external oscillating magnetic field. Lately, a type of MMUS, shear-wave dispersion magneto-motive ultrasound (SDMMUS) has been proposed to analyze the mechanical properties of the medium as a remote elastography novel technique. Interaction of the magnetic nanoparticles with an external magnetic field can generate a shear wave within the medium which has been labeled with these nanoparticles. The propagation of this wave provides information about viscoelastic properties of the medium including shear elasticity (µ1) and shear viscosity (µ2). In this method, the Levenberg-Marquardt algorithm, as a nonlinear fitting, was applied to calculate the velocity of shear wave versus excitation frequency in order to estimate viscoelasticity parameters. In this thesis, various tissue mimicking phantoms of gelatin, labeled with different superparamagnetic nanoparticles (Fe3O4) with different magnetization, were evaluated as ultrasound contrast. For each phantom one inclusion was used to generate shear wave dispersion magneto motive ultrasound imaging (SDMMUS). The effect of magnetization (which is directly related to magnetic susceptibility) on SDMMUS experiments were investigated and mechanical properties of the phantoms including shear elasticity and shear viscosity were calculated using generated shear wave. Finally, according to the results the optimized magnetic nanoparticle among those which were used in this thesis was Fe3O4 covered with latex. As it was expected, this optimized nanoparticle was the one with the highest magnetization and the results confirmed the direct relation of magnetization with induced displacement of magnetic nanoparticles |
id |
USP_063bcff441f5eebf1bdd7d10885fb3ae |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-27092019-094346 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrastAvaliação de nanopartículas magnéticas no contraste magneto-acustografia Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrastElastografiaElastographyMagnetic nanoparticlesMagnetomotive ultrasoundNanopartículas magnéticasOndas TransversaisPropriedades viscoelásticasShear waveSimulador de gelatinaTissue mimickingphantonUltrasoundUltrassomUltrassom magnetomotrizViscoelasticity propertiesMagnetic nanoparticles have been proven as great promising material for biology and medicine applications including protein purification, bacterial detection, drug delivery, hypertherrnia and imaging techniques such as magnetic resonance imaging (MRI), position emission tomography (PET), single photon emission computed tomography (SPECT), optical imaging and magnetic particle imaging and magnetic particle imaging. Recently several researchers have been developing magnetomotive ultrasound imaging (MMUS) as an imaging technique to improve the sensitivity of ultrasound to detect magnetic nanoparticles. In this technique (MMUS), an external magnetic excitation is applied in order to induce a motion within tissue labeled with magnetic nanoparticles and the backscattered ultrasound radio frequency (RF) waves are used to localize and image the magnetically induced motions within tissue. These vibrations, in order of micro meters, are originated from the interaction of the particles with an external oscillating magnetic field. Lately, a type of MMUS, shear-wave dispersion magneto-motive ultrasound (SDMMUS) has been proposed to analyze the mechanical properties of the medium as a remote elastography novel technique. Interaction of the magnetic nanoparticles with an external magnetic field can generate a shear wave within the medium which has been labeled with these nanoparticles. The propagation of this wave provides information about viscoelastic properties of the medium including shear elasticity (µ1) and shear viscosity (µ2). In this method, the Levenberg-Marquardt algorithm, as a nonlinear fitting, was applied to calculate the velocity of shear wave versus excitation frequency in order to estimate viscoelasticity parameters. In this thesis, various tissue mimicking phantoms of gelatin, labeled with different superparamagnetic nanoparticles (Fe3O4) with different magnetization, were evaluated as ultrasound contrast. For each phantom one inclusion was used to generate shear wave dispersion magneto motive ultrasound imaging (SDMMUS). The effect of magnetization (which is directly related to magnetic susceptibility) on SDMMUS experiments were investigated and mechanical properties of the phantoms including shear elasticity and shear viscosity were calculated using generated shear wave. Finally, according to the results the optimized magnetic nanoparticle among those which were used in this thesis was Fe3O4 covered with latex. As it was expected, this optimized nanoparticle was the one with the highest magnetization and the results confirmed the direct relation of magnetization with induced displacement of magnetic nanoparticlesNanopartículas magnéticas têm sido comprovadas como material promissor para uso em biologia e medicina, incluindo purificação de proteínas, detecção de bactérias, liberação de drogas, hipertermia e técnicas de imagem, como ressonância magnética (MRI), tomografia por emissão de posição (PET), emissão de fóton único tomografia computadorizada (SPECT) e imagem óptica. Recentemente, vários pesquisadores têm desenvolvido imagens de ultrassom magnetomotriz (MMUS) como técnica de imagem para melhorar a sensibilidade do ultrassom quando a nanopartículas magnéticas como contraste. Nesta técnica (MMUS), uma excitação magnética externa é aplicada a fim de induzir movimento dentro do tecido marcado com nanopartículas magnéticas e as ondas ultrassônicas (ondas RF) retroespalhadas são usadas para localizar e visualizar os movimentos induzidos. Essas vibrações, na ordem de micrometros, são originadas da interação das nanopartículas com um campo magnético oscilante externo. Recentemente, uma subdivisão da MMUS, denominada de ultrassom magnetomotriz por dispersão de ondas de cisalhamento (SDMMUS), tem sido desenvolvida como uma nova técnica de elastografia remota para analisar as propriedades mecânicas do meio. A interação das nanopartículas magnéticas com um campo magnético gera uma onda de cisalhamento e a propagação dessa onda fornece informações sobre as propriedades de viscoelasticidade do meio, incluindo a elasticidade de cisalhamento (µ1) e a viscosidade de cisalhamento (µ2). Neste método, o algoritmo de Levenberg-Marquardt, como ajuste não-linear, foi aplicado para calcular a velocidade da onda de cisalhamento versus a frequência de excitação, para estimar os parâmetros de viscoelasticidade. Nesta tese, vários tecidos sintéticos (simuladores) a base gelatina que mimetizam o tecido biológico mole, marcados com nanopartículas superparamagnéticas (Fe3O4) com diferentes magnetizações de saturação foram avaliados como contraste ultrassônico. Em cada um dos simuladores foi usada uma inclusão marcada com nanopartículas magnéticas para gerar imagens de ultrassom SDMMUS. O efeito da magnetização de saturação (que está diretamente relacionada à suscetibilidade magnética das nanopartículas) em experimentes SDMMUS foi investigado e as propriedades mecânicas dos simuladores, incluindo a elasticidade de cisalhamento e a viscosidade de cisalhamento, foram calculadas a partir das ondas de cisalhamento geradas. Finalmente, de acordo com os resultados, a melhor nanopartícula magnética, entre as que foram usadas nesta tese, foi a de Fe3O4 coberta com látex. Como era de se esperar, essa nanopartícula otimizada foi a que apresentou a maior saturação magnética e os resultados confirmaram a proporção linear de magnetização de saturação com o deslocamento das estruturas internas dos simuladores, induzido pela magnetização das próprias nanopartículasBiblioteca Digitais de Teses e Dissertações da USPCarneiro, Antonio Adilton OliveiraArsalani, Saeideh2018-08-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/59/59135/tde-27092019-094346/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-01-08T16:52:02Zoai:teses.usp.br:tde-27092019-094346Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-01-08T16:52:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrast Avaliação de nanopartículas magnéticas no contraste magneto-acustografia Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrast |
title |
Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrast |
spellingShingle |
Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrast Arsalani, Saeideh Elastografia Elastography Magnetic nanoparticles Magnetomotive ultrasound Nanopartículas magnéticas Ondas Transversais Propriedades viscoelásticas Shear wave Simulador de gelatina Tissue mimickingphanton Ultrasound Ultrassom Ultrassom magnetomotriz Viscoelasticity properties |
title_short |
Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrast |
title_full |
Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrast |
title_fullStr |
Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrast |
title_full_unstemmed |
Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrast |
title_sort |
Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrast |
author |
Arsalani, Saeideh |
author_facet |
Arsalani, Saeideh |
author_role |
author |
dc.contributor.none.fl_str_mv |
Carneiro, Antonio Adilton Oliveira |
dc.contributor.author.fl_str_mv |
Arsalani, Saeideh |
dc.subject.por.fl_str_mv |
Elastografia Elastography Magnetic nanoparticles Magnetomotive ultrasound Nanopartículas magnéticas Ondas Transversais Propriedades viscoelásticas Shear wave Simulador de gelatina Tissue mimickingphanton Ultrasound Ultrassom Ultrassom magnetomotriz Viscoelasticity properties |
topic |
Elastografia Elastography Magnetic nanoparticles Magnetomotive ultrasound Nanopartículas magnéticas Ondas Transversais Propriedades viscoelásticas Shear wave Simulador de gelatina Tissue mimickingphanton Ultrasound Ultrassom Ultrassom magnetomotriz Viscoelasticity properties |
description |
Magnetic nanoparticles have been proven as great promising material for biology and medicine applications including protein purification, bacterial detection, drug delivery, hypertherrnia and imaging techniques such as magnetic resonance imaging (MRI), position emission tomography (PET), single photon emission computed tomography (SPECT), optical imaging and magnetic particle imaging and magnetic particle imaging. Recently several researchers have been developing magnetomotive ultrasound imaging (MMUS) as an imaging technique to improve the sensitivity of ultrasound to detect magnetic nanoparticles. In this technique (MMUS), an external magnetic excitation is applied in order to induce a motion within tissue labeled with magnetic nanoparticles and the backscattered ultrasound radio frequency (RF) waves are used to localize and image the magnetically induced motions within tissue. These vibrations, in order of micro meters, are originated from the interaction of the particles with an external oscillating magnetic field. Lately, a type of MMUS, shear-wave dispersion magneto-motive ultrasound (SDMMUS) has been proposed to analyze the mechanical properties of the medium as a remote elastography novel technique. Interaction of the magnetic nanoparticles with an external magnetic field can generate a shear wave within the medium which has been labeled with these nanoparticles. The propagation of this wave provides information about viscoelastic properties of the medium including shear elasticity (µ1) and shear viscosity (µ2). In this method, the Levenberg-Marquardt algorithm, as a nonlinear fitting, was applied to calculate the velocity of shear wave versus excitation frequency in order to estimate viscoelasticity parameters. In this thesis, various tissue mimicking phantoms of gelatin, labeled with different superparamagnetic nanoparticles (Fe3O4) with different magnetization, were evaluated as ultrasound contrast. For each phantom one inclusion was used to generate shear wave dispersion magneto motive ultrasound imaging (SDMMUS). The effect of magnetization (which is directly related to magnetic susceptibility) on SDMMUS experiments were investigated and mechanical properties of the phantoms including shear elasticity and shear viscosity were calculated using generated shear wave. Finally, according to the results the optimized magnetic nanoparticle among those which were used in this thesis was Fe3O4 covered with latex. As it was expected, this optimized nanoparticle was the one with the highest magnetization and the results confirmed the direct relation of magnetization with induced displacement of magnetic nanoparticles |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/59/59135/tde-27092019-094346/ |
url |
http://www.teses.usp.br/teses/disponiveis/59/59135/tde-27092019-094346/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257461122138112 |