Considerations and Possible Solutions to the Problem of Estimating the Population Minimum with Applications to Earthquake Data

Detalhes bibliográficos
Autor(a) principal: Saldanha, Matheus Henrique Junqueira
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-28052024-145447/
Resumo: A myriad of physical, biological and other phenomena are better modeled with semi-infinite distribution families, in which case not knowing the populational minimum becomes a hassle when performing parametric inference. This problem has not been directly discussed in the literature thus far, but it is straightforward to devise a maximum likelihood solution (denoted hereafter as pure MLE), and endpoint estimators proposed in the literature could also be used. Although endpoint estimators are usually evaluated according to their bias and variance, in this project we argue that these are not adequate metrics, so we discuss and use alternatives. We then propose some solutions of our own, some of them aiming to achieve simplicity in terms of their computational cost, and one method (what we call maximum likelihood estimation with parameter-dependent support, or MLEPDS) where we estimate the population minimum indirectly, by maximizing a modified likelihood function L(⋅ ∣ θ) that shifts the sample by a certain amount depending on θ. Experiments demonstrate that the proposed MLEPDS method outperforms both the pure MLE method as well as the approaches that use endpoint estimators proposed in the literature. In particular, our method offers significantly better results in smaller samples, which will surely be of use to many practitioners out there who have to work with limited data. The dissertation is concluded with an application of the proposed MLEPDS method to predict the maximum magnitude of earthquakes. The probability distribution of earthquake magnitudes is subject to a lot of discussion in the literature; Kko (2004) describes a few options, which we modify appropriately for use in the MLEPDS method, with which we estimate maximum magnitudes. The regions of Japan, New Zealand, Balkan peninsula and worldwide are analyzed. Experiments show that our method overall gives higher estimates for the maximum magnitude than two other methods inspired by the literature, and also displays an apparent sensitivity in the year-by-year analysis, indicating that it manages to better capture and understand the underlying changes in seismic activity.
id USP_06bf8fed745d4b3aa729f6e564b3727f
oai_identifier_str oai:teses.usp.br:tde-28052024-145447
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Considerations and Possible Solutions to the Problem of Estimating the Population Minimum with Applications to Earthquake DataConsiderações e Possíveis Soluções para o Problema da Estimação do Mínimo Populacional com Aplicações em Dados de TerremotosEarthquakesEndpoint estimationEstimação de quantis extremosEstimação do endpointEstimação por máxima verossimilhançaExtreme quantile estimationExtreme value theoryMaximum likelihood estimationTeoria do valor extremoterremotosA myriad of physical, biological and other phenomena are better modeled with semi-infinite distribution families, in which case not knowing the populational minimum becomes a hassle when performing parametric inference. This problem has not been directly discussed in the literature thus far, but it is straightforward to devise a maximum likelihood solution (denoted hereafter as pure MLE), and endpoint estimators proposed in the literature could also be used. Although endpoint estimators are usually evaluated according to their bias and variance, in this project we argue that these are not adequate metrics, so we discuss and use alternatives. We then propose some solutions of our own, some of them aiming to achieve simplicity in terms of their computational cost, and one method (what we call maximum likelihood estimation with parameter-dependent support, or MLEPDS) where we estimate the population minimum indirectly, by maximizing a modified likelihood function L(⋅ ∣ θ) that shifts the sample by a certain amount depending on θ. Experiments demonstrate that the proposed MLEPDS method outperforms both the pure MLE method as well as the approaches that use endpoint estimators proposed in the literature. In particular, our method offers significantly better results in smaller samples, which will surely be of use to many practitioners out there who have to work with limited data. The dissertation is concluded with an application of the proposed MLEPDS method to predict the maximum magnitude of earthquakes. The probability distribution of earthquake magnitudes is subject to a lot of discussion in the literature; Kko (2004) describes a few options, which we modify appropriately for use in the MLEPDS method, with which we estimate maximum magnitudes. The regions of Japan, New Zealand, Balkan peninsula and worldwide are analyzed. Experiments show that our method overall gives higher estimates for the maximum magnitude than two other methods inspired by the literature, and also displays an apparent sensitivity in the year-by-year analysis, indicating that it manages to better capture and understand the underlying changes in seismic activity.Existem inúmeros fenômenos físicos e biológicos (e de outras áreas da ciência) que são inerentemente mais bem modelados se forem utilizadas famílias de distribuições com suporte semi-infinito, caso em que o desconhecimento sobre o mínimo populacional torna-se um obstáculo. Esse problema ainda não foi discutido de forma clara na literatura, mas é razoavelmente direta a construção de uma solução por máxima verossimilhança (denotada método MLE puro), e também há na literatura os estimadores de endpoint, que também podem ser utilizados. Porém, apesar da literatura comparar tais estimadores por meio de seus biases e variância, aqui argumenta-se que essas métricas não sejam adequadas ao propósito dessa dissertação, e portanto são discutidas algumas alternativas. Em seguida, são propostas soluções para o problema, algumas delas objetivando a simplicidade computacional, e uma, que chamamos de maximum likelihood estimation with parameter-dependent support (ou MLEPDS), que maximiza uma função modificada de máxima verossimilhança L (⋅ ∣ θ). Experimentos demonstram que o método MLEPDS consegue resultados melhores do que o método MLE puro, assim como as abordagens que utilizam estimadores de valor extremo propostos na literatura. Em particular, o método MLEPDS oferece melhores resultados em pequenas amostras, o que é de grande utilidade para estatísticos que trabalham com quantidade limitada de dados. Essa dissertação é concluída com uma aplicação do método MLEPDS para predizer a máxima magnitude de terremotos. A distribuição de probabilidade da magnitude dos terremotos é sujeita a muita discussão na literatura; Kko (2004) descreve algumas opções, as quais modificamos apropriadamente para uso com o método MLEPDS e possibilitar a estimação da magnitude máxima de uma dada região. As regiões do Japão, Nova Zelândia, península Balcânica e do globo terrestre como um todo são analisadas. Os experimentos demonstram que o método MLEPDS, em geral, retorna estimativas mais altas para a magnitude máxima, quando comparado com os dois outros métodos inspirados na literatura, e apresenta também uma sensibilidade maior na análise ano-a-ano, indicando que o método tem capacidade de melhor capturar e entender as mudanças subjacentes que eventualmente ocorrem na atividade sísmica de uma região.Biblioteca Digitais de Teses e Dissertações da USPSuzuki, Adriano KamimuraSaldanha, Matheus Henrique Junqueira2024-04-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-28052024-145447/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-05-28T19:10:02Zoai:teses.usp.br:tde-28052024-145447Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-05-28T19:10:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Considerations and Possible Solutions to the Problem of Estimating the Population Minimum with Applications to Earthquake Data
Considerações e Possíveis Soluções para o Problema da Estimação do Mínimo Populacional com Aplicações em Dados de Terremotos
title Considerations and Possible Solutions to the Problem of Estimating the Population Minimum with Applications to Earthquake Data
spellingShingle Considerations and Possible Solutions to the Problem of Estimating the Population Minimum with Applications to Earthquake Data
Saldanha, Matheus Henrique Junqueira
Earthquakes
Endpoint estimation
Estimação de quantis extremos
Estimação do endpoint
Estimação por máxima verossimilhança
Extreme quantile estimation
Extreme value theory
Maximum likelihood estimation
Teoria do valor extremo
terremotos
title_short Considerations and Possible Solutions to the Problem of Estimating the Population Minimum with Applications to Earthquake Data
title_full Considerations and Possible Solutions to the Problem of Estimating the Population Minimum with Applications to Earthquake Data
title_fullStr Considerations and Possible Solutions to the Problem of Estimating the Population Minimum with Applications to Earthquake Data
title_full_unstemmed Considerations and Possible Solutions to the Problem of Estimating the Population Minimum with Applications to Earthquake Data
title_sort Considerations and Possible Solutions to the Problem of Estimating the Population Minimum with Applications to Earthquake Data
author Saldanha, Matheus Henrique Junqueira
author_facet Saldanha, Matheus Henrique Junqueira
author_role author
dc.contributor.none.fl_str_mv Suzuki, Adriano Kamimura
dc.contributor.author.fl_str_mv Saldanha, Matheus Henrique Junqueira
dc.subject.por.fl_str_mv Earthquakes
Endpoint estimation
Estimação de quantis extremos
Estimação do endpoint
Estimação por máxima verossimilhança
Extreme quantile estimation
Extreme value theory
Maximum likelihood estimation
Teoria do valor extremo
terremotos
topic Earthquakes
Endpoint estimation
Estimação de quantis extremos
Estimação do endpoint
Estimação por máxima verossimilhança
Extreme quantile estimation
Extreme value theory
Maximum likelihood estimation
Teoria do valor extremo
terremotos
description A myriad of physical, biological and other phenomena are better modeled with semi-infinite distribution families, in which case not knowing the populational minimum becomes a hassle when performing parametric inference. This problem has not been directly discussed in the literature thus far, but it is straightforward to devise a maximum likelihood solution (denoted hereafter as pure MLE), and endpoint estimators proposed in the literature could also be used. Although endpoint estimators are usually evaluated according to their bias and variance, in this project we argue that these are not adequate metrics, so we discuss and use alternatives. We then propose some solutions of our own, some of them aiming to achieve simplicity in terms of their computational cost, and one method (what we call maximum likelihood estimation with parameter-dependent support, or MLEPDS) where we estimate the population minimum indirectly, by maximizing a modified likelihood function L(⋅ ∣ θ) that shifts the sample by a certain amount depending on θ. Experiments demonstrate that the proposed MLEPDS method outperforms both the pure MLE method as well as the approaches that use endpoint estimators proposed in the literature. In particular, our method offers significantly better results in smaller samples, which will surely be of use to many practitioners out there who have to work with limited data. The dissertation is concluded with an application of the proposed MLEPDS method to predict the maximum magnitude of earthquakes. The probability distribution of earthquake magnitudes is subject to a lot of discussion in the literature; Kko (2004) describes a few options, which we modify appropriately for use in the MLEPDS method, with which we estimate maximum magnitudes. The regions of Japan, New Zealand, Balkan peninsula and worldwide are analyzed. Experiments show that our method overall gives higher estimates for the maximum magnitude than two other methods inspired by the literature, and also displays an apparent sensitivity in the year-by-year analysis, indicating that it manages to better capture and understand the underlying changes in seismic activity.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/104/104131/tde-28052024-145447/
url https://www.teses.usp.br/teses/disponiveis/104/104131/tde-28052024-145447/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257434349895680