Obtaining and using aerial thermal images for the study of in-field crop spatial variability
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11152/tde-04082021-132031/ |
Resumo: | The use of miniaturized thermal cameras attached to unmanned aerial vehicles (UAV) expanded the applications of remotely sensed temperature, especially in small-scale agriculture, where high spatial and temporal resolutions are necessary. However, deriving accurate temperature readings from these cameras is often challenging due to issues related to unstable accuracy and orthomosaic processing. Overcoming these problems is fundamental to ensure the accuracy needed for applications such as crop water stress monitoring, where small differences in canopy temperature (CT) can reflect an onset water stress. In this study, we tested a low-cost thermal camera in proximal and aerial conditions, focusing on developing a feasible methodology to deliver accurate temperature readings and mitigate issues related to orthomosaic processing. The results include a co-registering method that significantly increased the image alignment performance, producing suitable thermal orthomosaics. In terms of accuracy, calibration models were developed according to the flight altitude and conditions tested, resulting in root mean squared errors (RMSE) lower than 2°C, with best results obtained with orthomosaics produced with blending mode set as average. Using this methodology, we investigated the relationship of UAV-based canopy temperature with soil and plant attributes linked to water status in a rainfed maize field. While the aerial images were taken, a guided sampling took place across the field to determine soil and plant water content. The results demonstrated that the field of study presented high spatial variability in terms of soil water storage (SWS), with a coefficient of variation of 23.3% and values close to the permanent wilting point (PWP), confirming the soil water deficit. This result was reflected on CT values, which ranged from 32.8 to 40.6°C among the sampling locations. Although CT correlated well with most of the soil physical attributes related to water dynamic, the simple linear regression between CT and soil water content variables yielded coefficients of determination (R2) ≤ 0.26, indicating that CT alone is not sufficient to predict soil water status. Nonetheless, when CT was combined with some soil physical attributes in a stepwise multiple linear regression the prediction capacity was significantly increased achieving R2 values ≥ 0.83, demonstrating a potential use for CT associated with pre-existing soil attributes as an in-season tool to assess the spatial variability of soil water content. |
id |
USP_077968cae4ff1688f57690eee0239fb0 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04082021-132031 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Obtaining and using aerial thermal images for the study of in-field crop spatial variabilityColeta e processamento de imagens termais para análise da variabilidade espacial de lavourasCalibraçãoCalibrationCâmera termográficaConteúdo de água no soloEstresse hídricoPlant water stressRPASoil water contentTermografiaThermographyUAVUncooled thermal cameraThe use of miniaturized thermal cameras attached to unmanned aerial vehicles (UAV) expanded the applications of remotely sensed temperature, especially in small-scale agriculture, where high spatial and temporal resolutions are necessary. However, deriving accurate temperature readings from these cameras is often challenging due to issues related to unstable accuracy and orthomosaic processing. Overcoming these problems is fundamental to ensure the accuracy needed for applications such as crop water stress monitoring, where small differences in canopy temperature (CT) can reflect an onset water stress. In this study, we tested a low-cost thermal camera in proximal and aerial conditions, focusing on developing a feasible methodology to deliver accurate temperature readings and mitigate issues related to orthomosaic processing. The results include a co-registering method that significantly increased the image alignment performance, producing suitable thermal orthomosaics. In terms of accuracy, calibration models were developed according to the flight altitude and conditions tested, resulting in root mean squared errors (RMSE) lower than 2°C, with best results obtained with orthomosaics produced with blending mode set as average. Using this methodology, we investigated the relationship of UAV-based canopy temperature with soil and plant attributes linked to water status in a rainfed maize field. While the aerial images were taken, a guided sampling took place across the field to determine soil and plant water content. The results demonstrated that the field of study presented high spatial variability in terms of soil water storage (SWS), with a coefficient of variation of 23.3% and values close to the permanent wilting point (PWP), confirming the soil water deficit. This result was reflected on CT values, which ranged from 32.8 to 40.6°C among the sampling locations. Although CT correlated well with most of the soil physical attributes related to water dynamic, the simple linear regression between CT and soil water content variables yielded coefficients of determination (R2) ≤ 0.26, indicating that CT alone is not sufficient to predict soil water status. Nonetheless, when CT was combined with some soil physical attributes in a stepwise multiple linear regression the prediction capacity was significantly increased achieving R2 values ≥ 0.83, demonstrating a potential use for CT associated with pre-existing soil attributes as an in-season tool to assess the spatial variability of soil water content.O uso de câmeras termográficas embarcadas em aeronaves remotamente pilotadas (RPA) expandiu as aplicações da termografia, sobretudo na agricultura, em que é demandada alta resolução espacial e temporal. Entretanto, obter medidas de temperatura acuradas a partir destes sensores nem sempre é trivial em virtude da instabilidade de sua acurácia e da dificuldade de produzir ortomosaicos a partir de imagens termais. Nesse sentido, superar esses problemas se mostra fundamental para garantir níveis de acurácia compatíveis com aplicações práticas, a exemplo da detecção do estresse hídrico das plantas, em que pequenas diferenças na temperatura do dossel podem refletir um princípio de estresse hídrico. Neste estudo, foi testada uma câmera termográfica de baixo custo em condições proximais e aéreas, com enfoque no desenvolvimento de uma metodologia prática capaz de fornecer melhores níveis de acurácia nas leituras de temperatura, bem como, minimizar os problemas inerentes ao processamento fotogramétrico. Os resultados incluem um método de co-registro das imagens termais, capaz de mitigar os problemas enfrentados na etapa de alinhamento das imagens, favorecendo assim, a obtenção de ortomosaicos da área integral. Em termos de acurácia, foram desenvolvidos modelos de calibração de acordo com a altitude de voo e condições meteorológicas, elevando a acurácia final dos dados de temperatura para menos de 2°C (root mean squared error - RMSE), com melhores resultados obtidos com a configuração de \"blending mode\" ajustada pela média. Essa metodologia foi posteriormente empregada para investigar a relação entre a temperatura do dossel das plantas coletada por meio das imagens aéreas com atributos relacionados ao estresse hídrico numa lavoura de milho em regime de sequeiro. Enquanto as imagens aéreas eram tomadas, efetuou-se uma amostragem direcionada ao longo da lavoura para que fossem coletados dados relativos ao teor de água na planta e no solo. Os resultados demonstraram que a área apresentava alta variabilidade no conteúdo de água no solo, com coeficiente de variação de 23.3%, e valores de umidade volumétrica próximos aos de ponto de murcha permanente, confirmando a condição de déficit hídrico no solo. Tal resultado foi evidenciado nas medidas de temperatura do dossel, que variaram entre 32.8 até 40.6°C entre os pontos amostrais. Apesar da temperatura do dossel das plantas ter apresentado correlação com a maioria dos atributos físicos do solo, os resultados da regressão linear simples entre temperatura e umidade volumétrica do solo atingiram coeficientes de determinação (R2) ≤ 0.26, indicando que a temperatura do dossel não é suficiente para predizer o conteúdo de água no solo. Apesar disso, quando a temperatura do dossel foi associada com alguns atributos físicos do solo em uma regressão linear múltipla, a capacidade preditiva do modelo foi elevada drasticamente, alcançando valores de R2 ≥ 0.83, o que demonstra a potencialidade do uso da temperatura das plantas em associação com dados pré-existentes de física do solo como ferramenta para análise da variabilidade espacial do teor de água no solo durante o ciclo da cultura.Biblioteca Digitais de Teses e Dissertações da USPGimenez, Leandro MariaAcorsi, Matheus Gabriel2021-04-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11152/tde-04082021-132031/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-08-05T13:01:01Zoai:teses.usp.br:tde-04082021-132031Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-08-05T13:01:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Obtaining and using aerial thermal images for the study of in-field crop spatial variability Coleta e processamento de imagens termais para análise da variabilidade espacial de lavouras |
title |
Obtaining and using aerial thermal images for the study of in-field crop spatial variability |
spellingShingle |
Obtaining and using aerial thermal images for the study of in-field crop spatial variability Acorsi, Matheus Gabriel Calibração Calibration Câmera termográfica Conteúdo de água no solo Estresse hídrico Plant water stress RPA Soil water content Termografia Thermography UAV Uncooled thermal camera |
title_short |
Obtaining and using aerial thermal images for the study of in-field crop spatial variability |
title_full |
Obtaining and using aerial thermal images for the study of in-field crop spatial variability |
title_fullStr |
Obtaining and using aerial thermal images for the study of in-field crop spatial variability |
title_full_unstemmed |
Obtaining and using aerial thermal images for the study of in-field crop spatial variability |
title_sort |
Obtaining and using aerial thermal images for the study of in-field crop spatial variability |
author |
Acorsi, Matheus Gabriel |
author_facet |
Acorsi, Matheus Gabriel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gimenez, Leandro Maria |
dc.contributor.author.fl_str_mv |
Acorsi, Matheus Gabriel |
dc.subject.por.fl_str_mv |
Calibração Calibration Câmera termográfica Conteúdo de água no solo Estresse hídrico Plant water stress RPA Soil water content Termografia Thermography UAV Uncooled thermal camera |
topic |
Calibração Calibration Câmera termográfica Conteúdo de água no solo Estresse hídrico Plant water stress RPA Soil water content Termografia Thermography UAV Uncooled thermal camera |
description |
The use of miniaturized thermal cameras attached to unmanned aerial vehicles (UAV) expanded the applications of remotely sensed temperature, especially in small-scale agriculture, where high spatial and temporal resolutions are necessary. However, deriving accurate temperature readings from these cameras is often challenging due to issues related to unstable accuracy and orthomosaic processing. Overcoming these problems is fundamental to ensure the accuracy needed for applications such as crop water stress monitoring, where small differences in canopy temperature (CT) can reflect an onset water stress. In this study, we tested a low-cost thermal camera in proximal and aerial conditions, focusing on developing a feasible methodology to deliver accurate temperature readings and mitigate issues related to orthomosaic processing. The results include a co-registering method that significantly increased the image alignment performance, producing suitable thermal orthomosaics. In terms of accuracy, calibration models were developed according to the flight altitude and conditions tested, resulting in root mean squared errors (RMSE) lower than 2°C, with best results obtained with orthomosaics produced with blending mode set as average. Using this methodology, we investigated the relationship of UAV-based canopy temperature with soil and plant attributes linked to water status in a rainfed maize field. While the aerial images were taken, a guided sampling took place across the field to determine soil and plant water content. The results demonstrated that the field of study presented high spatial variability in terms of soil water storage (SWS), with a coefficient of variation of 23.3% and values close to the permanent wilting point (PWP), confirming the soil water deficit. This result was reflected on CT values, which ranged from 32.8 to 40.6°C among the sampling locations. Although CT correlated well with most of the soil physical attributes related to water dynamic, the simple linear regression between CT and soil water content variables yielded coefficients of determination (R2) ≤ 0.26, indicating that CT alone is not sufficient to predict soil water status. Nonetheless, when CT was combined with some soil physical attributes in a stepwise multiple linear regression the prediction capacity was significantly increased achieving R2 values ≥ 0.83, demonstrating a potential use for CT associated with pre-existing soil attributes as an in-season tool to assess the spatial variability of soil water content. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-04082021-132031/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-04082021-132031/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256667941502976 |