Modelagem e controle de microturbina a gás do tipo split-shaft.

Detalhes bibliográficos
Autor(a) principal: Faria, Vítor Pereira
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3150/tde-11082010-111758/
Resumo: O objetivo deste trabalho é o desenvolvimento do modelo de uma microturbina a gás do tipo split-shaft com sistema de controle por retro-alimentação. Uma revisão bibliográfica dos trabalhos sobre controle de turbinas a gás indicou que praticamente inexistem trabalhos focando este tipo de turbina. O modelo foi desenvolvido a partir da geometria básica da turbina, aplicando-se os fundamentamentos de termodinâmica, mecânica newtoniana e mecânica dos fluidos mencionando os usos da primeira lei da termodinâmica, teoria de momento angular e atrito viscoso entre outros. O trabalho descreve os componentes, materiais e controles que podem ser usados em uma turbina split-shaft. O modelo foi simulado primeiramente sem controle e posteriormente com controle. Através dos resultados da simulação do modelo sem controle puderam ser vistos fenômenos que podem ocorrer em um sistema desse tipo como picos de temperatura, influência de uma turbina sobre a outra e a variação de injeção de combustível devido à variação de pressão na câmara de combustão entre outros. Para o modelo controlado, foram testados os controles PI, PID, PI-D, I-PD e PI-PD com feedback negativo. A escolha dos parâmetros de cada controle foi determinada pelo método ITAE dentro de um intervalo para cada parâmetro. O controle escolhido foi o PI-D por seu melhor desempenho e maior simplicidade. O controle fez com que as temperaturas de pico abaixassem em relação ao sistema sem controle e a rotação do gerador de energia elétrica foi mantida com uma variação máxima menor que 1% em relação à rotação de referência. Uma modelagem foi feita para um sistema lubrificante seguindo os mesmos princípios da modelagem da turbina split-shaft. Usou-se fundamentos de mecânica newtoniana e mecânica dos fluidos, com o equacionamento da conservação da quantidade de movimento, perdas de pressão localizada e distribuída entre outros. O modelo foi simulado primeiramente sem controle e posteriormente com controle. Através do modelo sem controle viu-se os efeitos do aumento da perda de carga em um dos ramos do sistema e os efeitos de uma entrada de referência em degrau. Esses efeitos são as variações das perdas no sistema e a variação do fluxo nos ramos do sistema. Para o modelo controlado foram testados os controles PI e PI-D com feedback negativo. Utilizou-se o método ITAE dentro de um intervalo para escolha dos parâmetros. O controle escolhido foi o PI porque a diferença de desempenho não foi significativa e a parte derivativa poderia tornar o erro maior devido à forma como o sistema foi modelado. A variável de processo foi controlada e os efeitos da variação de perda de carga em um dos ramos do sistema pôde ser observada. Os modelos são constituídos de várias partes simples, cada qual pode ser substituída por um modelo mais preciso. Assim, a modelagem funciona como um guia, mostrando as partes principais do sistema e podendo fornecer dados para a elaboração de novos modelos.
id USP_07813eb2ef4016e31b8b3fb5163a39cd
oai_identifier_str oai:teses.usp.br:tde-11082010-111758
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelagem e controle de microturbina a gás do tipo split-shaft.Modeling and control of slip-shaft gas microturbine.Controle PIDModelagemModelingPID controlSimulaçãoSimulationSplit-shaft turbineTurbina split-shaftO objetivo deste trabalho é o desenvolvimento do modelo de uma microturbina a gás do tipo split-shaft com sistema de controle por retro-alimentação. Uma revisão bibliográfica dos trabalhos sobre controle de turbinas a gás indicou que praticamente inexistem trabalhos focando este tipo de turbina. O modelo foi desenvolvido a partir da geometria básica da turbina, aplicando-se os fundamentamentos de termodinâmica, mecânica newtoniana e mecânica dos fluidos mencionando os usos da primeira lei da termodinâmica, teoria de momento angular e atrito viscoso entre outros. O trabalho descreve os componentes, materiais e controles que podem ser usados em uma turbina split-shaft. O modelo foi simulado primeiramente sem controle e posteriormente com controle. Através dos resultados da simulação do modelo sem controle puderam ser vistos fenômenos que podem ocorrer em um sistema desse tipo como picos de temperatura, influência de uma turbina sobre a outra e a variação de injeção de combustível devido à variação de pressão na câmara de combustão entre outros. Para o modelo controlado, foram testados os controles PI, PID, PI-D, I-PD e PI-PD com feedback negativo. A escolha dos parâmetros de cada controle foi determinada pelo método ITAE dentro de um intervalo para cada parâmetro. O controle escolhido foi o PI-D por seu melhor desempenho e maior simplicidade. O controle fez com que as temperaturas de pico abaixassem em relação ao sistema sem controle e a rotação do gerador de energia elétrica foi mantida com uma variação máxima menor que 1% em relação à rotação de referência. Uma modelagem foi feita para um sistema lubrificante seguindo os mesmos princípios da modelagem da turbina split-shaft. Usou-se fundamentos de mecânica newtoniana e mecânica dos fluidos, com o equacionamento da conservação da quantidade de movimento, perdas de pressão localizada e distribuída entre outros. O modelo foi simulado primeiramente sem controle e posteriormente com controle. Através do modelo sem controle viu-se os efeitos do aumento da perda de carga em um dos ramos do sistema e os efeitos de uma entrada de referência em degrau. Esses efeitos são as variações das perdas no sistema e a variação do fluxo nos ramos do sistema. Para o modelo controlado foram testados os controles PI e PI-D com feedback negativo. Utilizou-se o método ITAE dentro de um intervalo para escolha dos parâmetros. O controle escolhido foi o PI porque a diferença de desempenho não foi significativa e a parte derivativa poderia tornar o erro maior devido à forma como o sistema foi modelado. A variável de processo foi controlada e os efeitos da variação de perda de carga em um dos ramos do sistema pôde ser observada. Os modelos são constituídos de várias partes simples, cada qual pode ser substituída por um modelo mais preciso. Assim, a modelagem funciona como um guia, mostrando as partes principais do sistema e podendo fornecer dados para a elaboração de novos modelos.The objective of the present work is the development of the model of a split-shaft micro gas turbine with feed back control system. A bibliographical review of the works on control of gas turbines indicated that there are very few works dealing this type of gas turbines. The model was developed starting from the basic geometry of the turbine and applying the fundamentals of thermodynamics, newtonian mechanics and fluid mechanics. The components, materials and controls which can be used in a split-shaft turbine are described. The model is simulated firstly without control and later with control. The results showed that, for the uncontrolled model, typical phenomena which may happen in this type of system are seen such as temperature peaks, influence of one turbine on the other and fuel injection variation due to combustion chamber pressure variation amongst others. For the controlled model, the controls PI, PID, PI-D, I-PD and PI-PD with negative feedback are tested. The parameters choice of each control is determined by the ITAE method within an interval for each parameter. The PI-D control was chosen for its best performance and simplicity. The control made the peak temperatures lower than the uncontrolled system and the electricity generator rotation error was kept under 1% with respect to the reference value. A modeling is done for a lubrification system following the same principles of the split-shaft turbine modeling. Conservation laws of mechanics and fluid mechanics are used, such as momentum conservation and energy conservation equations (pressure loss). The model is simulated firstly without control and later with control. For the uncontrolled model, the effects on increasing the head loss in one branch of the system and the effects for a step reference was showed. These effects are the variations of system losses and the flow variation in the system branches. For the controlled model, the PI and PI-D controls with negative feedback were tested. The parameters choice of each control is determined by the ITAE method within an interval for each parameter. The PI control was chosen because the performance difference was not significant and the derivative part could turn the error bigger due to the way the system was modelled. The process variable was controlled and the effects on the variation head loss in one of the system branches was observed. The models have many simple parts; each one can be replaced by a more complex one if necessary. Thus, the present modeling may be used as guide for future improvements.Biblioteca Digitais de Teses e Dissertações da USPYanagihara, Jurandir ItizoFaria, Vítor Pereira2010-02-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3150/tde-11082010-111758/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:09Zoai:teses.usp.br:tde-11082010-111758Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:09Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelagem e controle de microturbina a gás do tipo split-shaft.
Modeling and control of slip-shaft gas microturbine.
title Modelagem e controle de microturbina a gás do tipo split-shaft.
spellingShingle Modelagem e controle de microturbina a gás do tipo split-shaft.
Faria, Vítor Pereira
Controle PID
Modelagem
Modeling
PID control
Simulação
Simulation
Split-shaft turbine
Turbina split-shaft
title_short Modelagem e controle de microturbina a gás do tipo split-shaft.
title_full Modelagem e controle de microturbina a gás do tipo split-shaft.
title_fullStr Modelagem e controle de microturbina a gás do tipo split-shaft.
title_full_unstemmed Modelagem e controle de microturbina a gás do tipo split-shaft.
title_sort Modelagem e controle de microturbina a gás do tipo split-shaft.
author Faria, Vítor Pereira
author_facet Faria, Vítor Pereira
author_role author
dc.contributor.none.fl_str_mv Yanagihara, Jurandir Itizo
dc.contributor.author.fl_str_mv Faria, Vítor Pereira
dc.subject.por.fl_str_mv Controle PID
Modelagem
Modeling
PID control
Simulação
Simulation
Split-shaft turbine
Turbina split-shaft
topic Controle PID
Modelagem
Modeling
PID control
Simulação
Simulation
Split-shaft turbine
Turbina split-shaft
description O objetivo deste trabalho é o desenvolvimento do modelo de uma microturbina a gás do tipo split-shaft com sistema de controle por retro-alimentação. Uma revisão bibliográfica dos trabalhos sobre controle de turbinas a gás indicou que praticamente inexistem trabalhos focando este tipo de turbina. O modelo foi desenvolvido a partir da geometria básica da turbina, aplicando-se os fundamentamentos de termodinâmica, mecânica newtoniana e mecânica dos fluidos mencionando os usos da primeira lei da termodinâmica, teoria de momento angular e atrito viscoso entre outros. O trabalho descreve os componentes, materiais e controles que podem ser usados em uma turbina split-shaft. O modelo foi simulado primeiramente sem controle e posteriormente com controle. Através dos resultados da simulação do modelo sem controle puderam ser vistos fenômenos que podem ocorrer em um sistema desse tipo como picos de temperatura, influência de uma turbina sobre a outra e a variação de injeção de combustível devido à variação de pressão na câmara de combustão entre outros. Para o modelo controlado, foram testados os controles PI, PID, PI-D, I-PD e PI-PD com feedback negativo. A escolha dos parâmetros de cada controle foi determinada pelo método ITAE dentro de um intervalo para cada parâmetro. O controle escolhido foi o PI-D por seu melhor desempenho e maior simplicidade. O controle fez com que as temperaturas de pico abaixassem em relação ao sistema sem controle e a rotação do gerador de energia elétrica foi mantida com uma variação máxima menor que 1% em relação à rotação de referência. Uma modelagem foi feita para um sistema lubrificante seguindo os mesmos princípios da modelagem da turbina split-shaft. Usou-se fundamentos de mecânica newtoniana e mecânica dos fluidos, com o equacionamento da conservação da quantidade de movimento, perdas de pressão localizada e distribuída entre outros. O modelo foi simulado primeiramente sem controle e posteriormente com controle. Através do modelo sem controle viu-se os efeitos do aumento da perda de carga em um dos ramos do sistema e os efeitos de uma entrada de referência em degrau. Esses efeitos são as variações das perdas no sistema e a variação do fluxo nos ramos do sistema. Para o modelo controlado foram testados os controles PI e PI-D com feedback negativo. Utilizou-se o método ITAE dentro de um intervalo para escolha dos parâmetros. O controle escolhido foi o PI porque a diferença de desempenho não foi significativa e a parte derivativa poderia tornar o erro maior devido à forma como o sistema foi modelado. A variável de processo foi controlada e os efeitos da variação de perda de carga em um dos ramos do sistema pôde ser observada. Os modelos são constituídos de várias partes simples, cada qual pode ser substituída por um modelo mais preciso. Assim, a modelagem funciona como um guia, mostrando as partes principais do sistema e podendo fornecer dados para a elaboração de novos modelos.
publishDate 2010
dc.date.none.fl_str_mv 2010-02-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3150/tde-11082010-111758/
url http://www.teses.usp.br/teses/disponiveis/3/3150/tde-11082010-111758/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090622179508224