Characterization of natural genetic variation in tomato (Solanum lycopersicum) for root ammonium uptake

Detalhes bibliográficos
Autor(a) principal: Gabriel de Oliveira Ragazzo
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://doi.org/10.11606/D.64.2021.tde-04092023-134221
Resumo: Most cultivated plants, and especially tomato (Solanum lycopersicum), require large amounts of nitrogen (N) to achieve high commercial yields. Consequently, excessive quantities of the costly N-based fertilizers are supplied during crop cultivation. The investigation of the natural genetic variability for N uptake may help to design genetic strategies to improve N use efficiency (NUE) in tomato and, ultimately, decrease the amount of applied fertilizers. In plants, ammonium is the preferred source of N and is transported through proteins of the AMMONIUM TRANSPORTERS family (AMTs). Thus, the objective of this work was to identify and characterize AMTs, as well as possible regulations that alter the ammonium uptake in tomato. In a genomic survey, eight AMTs were identified in tomato, of which four had not been described before. The SlAMTs showed significant differences in expression between the plant tissues, indicating possible specific functions for each gene. In root, SlAMT1.1 was the most expressed and is described as the main responsible for ammonium uptake in several species. Diversity analysis indicated the presence of great variability in the SlAMT1.1 sequence between tomato accessions and wild Solanum species (section Lycopersicon). A study of 15N-labeled ammonium uptake kinetics under different N availability was carried out among the genotypes S. lycopersicum cv. M82, S. pimpinellifolium, S. habrochaites, and S. chmielewskii. When N was supplied at sufficient levels, S. chmielewskii showed a greater 15N-ammonium influx, which correlated with a higher level of SlAMT1.1 expression in this genotype. During ammonium resupply, S. habrochaites and S. chmielewskii genotypes showed less inhibition of the 15N-ammonium uptake process when compared to S. lycopersicum cv. M82 and S. pimpinellifolium. The expression levels suggest a differential allosteric regulation of SlAMT1.1 in these genotypes. These results suggest that variability in the SlAMT1.1 gene among tomato genotypes can provide different patterns of protein activity and gene expression under different N conditions. Finally, a genomic wide association study (GWAS) using 31 tomato accessions was carried out and indicated the presence of a SNP (GC) in the 3\' UTR region of a 14-3-3 gene, which seem necessary to modulate the expression of SlAMT1.1. Further evidences implied that this locus is associated with the signaling by brassinosteroids, although further studies are necessary to better describe this mechanism. In summary, natural genetic variation in tomato has great potential for breeding new cultivars with greater efficiency in the use of nitrogen
id USP_081531c837b8e3b05585ac9e0e321218
oai_identifier_str oai:teses.usp.br:tde-04092023-134221
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis Characterization of natural genetic variation in tomato (Solanum lycopersicum) for root ammonium uptake Caracterização da variação genética natural para a absorção de amônio em raiz de tomateiro (Solanum lycopersicum). 2021-08-06Antonio Vargas de Oliveira FigueiraJoni Esrom LimaRicardo Fabiano Hettwer GiehlFabio Tebaldi Silveira NogueiraGabriel de Oliveira RagazzoUniversidade de São PauloCiências (Energia Nuclear na Agricultura)USPBR Ammonium transporters Cinética de Absorção Eficiência no uso de nitrogênio Fertilização nitrogenada Gene regulation Nitrogen fertilization Nitrogen use efficiency Regulação gênica Transportadores de amônio Uptake kinetic Most cultivated plants, and especially tomato (Solanum lycopersicum), require large amounts of nitrogen (N) to achieve high commercial yields. Consequently, excessive quantities of the costly N-based fertilizers are supplied during crop cultivation. The investigation of the natural genetic variability for N uptake may help to design genetic strategies to improve N use efficiency (NUE) in tomato and, ultimately, decrease the amount of applied fertilizers. In plants, ammonium is the preferred source of N and is transported through proteins of the AMMONIUM TRANSPORTERS family (AMTs). Thus, the objective of this work was to identify and characterize AMTs, as well as possible regulations that alter the ammonium uptake in tomato. In a genomic survey, eight AMTs were identified in tomato, of which four had not been described before. The SlAMTs showed significant differences in expression between the plant tissues, indicating possible specific functions for each gene. In root, SlAMT1.1 was the most expressed and is described as the main responsible for ammonium uptake in several species. Diversity analysis indicated the presence of great variability in the SlAMT1.1 sequence between tomato accessions and wild Solanum species (section Lycopersicon). A study of 15N-labeled ammonium uptake kinetics under different N availability was carried out among the genotypes S. lycopersicum cv. M82, S. pimpinellifolium, S. habrochaites, and S. chmielewskii. When N was supplied at sufficient levels, S. chmielewskii showed a greater 15N-ammonium influx, which correlated with a higher level of SlAMT1.1 expression in this genotype. During ammonium resupply, S. habrochaites and S. chmielewskii genotypes showed less inhibition of the 15N-ammonium uptake process when compared to S. lycopersicum cv. M82 and S. pimpinellifolium. The expression levels suggest a differential allosteric regulation of SlAMT1.1 in these genotypes. These results suggest that variability in the SlAMT1.1 gene among tomato genotypes can provide different patterns of protein activity and gene expression under different N conditions. Finally, a genomic wide association study (GWAS) using 31 tomato accessions was carried out and indicated the presence of a SNP (GC) in the 3\' UTR region of a 14-3-3 gene, which seem necessary to modulate the expression of SlAMT1.1. Further evidences implied that this locus is associated with the signaling by brassinosteroids, although further studies are necessary to better describe this mechanism. In summary, natural genetic variation in tomato has great potential for breeding new cultivars with greater efficiency in the use of nitrogen A maioria das plantas cultivadas, e especialmente o tomateiro (Solanum lycopersicum), requer grandes quantidades de nitrogênio (N) para atingir altos índices de produtividade. Consequentemente, quantidades excessivas de fertilizantes nitrogenados são fornecidas durante o cultivo. A investigação da variabilidade genética natural para absorção de N pode ajudar a projetar estratégias genéticas para melhorar a eficiência do uso de N (EUN) em tomateiro e, em última instância, diminuir a quantidade de fertilizantes aplicados. Para plantas, o amônio é a fonte preferencial de N e é transportado através de proteínas da família AMMONIUM TRANSPORTERS (AMTs). Assim, o objetivo deste trabalho foi identificar e caracterizar AMTs, bem como possíveis regulações que alteram a absorção de amônio em tomateiro. Em uma análise genômica, oito AMTs foram identificados em tomateiro, dos quais quatro não haviam sido descritos antes. Os SlAMTs apresentaram diferenças significativas na expressão entre os tecidos vegetais, indicando possíveis funções específicas para cada gene. Na raiz, SlAMT1.1 foi o mais expresso e é descrito como o principal responsável pela absorção de amônio em diversas espécies. Uma análise de diversidade indicou a presença de grande variabilidade na sequência de SlAMT1.1 entre acessos de tomateiros cultivados e espécies selvagens de Solanum (seção Lycopersicon). Um estudo da cinética de absorção de amônio marcado com 15N sob diferentes disponibilidades de N foi realizado entre os genótipos S. lycopersicum cv. M82, S. pimpinellifolium, S. habrochaites e S. chmielewskii. Quando o N foi fornecido em suficiência, S. chmielewskii apresentou um maior influxo de 15N-amônio, o que se correlacionou com um nível mais alto de expressão de SlAMT1.1 neste genótipo. Durante a ressuplementação de amônio, os genótipos S. habrochaites e S. chmielewskii apresentaram menor inibição do processo de absorção de 15N-amônio quando comparados com S. lycopersicum cv. M82 e S. pimpinellifolium. Os níveis de expressão sugerem uma regulação alostérica diferencial de SlAMT1.1 nesses genótipos. Esses resultados sugerem que a variabilidade no gene SlAMT1.1 entre genótipos de tomateiro pode fornecer diferentes padrões de atividade proteica e expressão gênica sob diferentes condições de N. Finalmente, um estudo de associação ampla genômica (GWAS) usando 31 acessos de tomateiro foi realizado e indicou a presença de um SNP (GC) na região 3\' UTR de um gene 14-3-3, que parece necessário para modular o expressão de SlAMT1.1. Evidências adicionais sugerem que esse locus está associado à sinalização por brassinosteroides, embora mais estudos sejam necessários para melhor descrever esse mecanismo. Em suma, a variação genética natural em tomateiro apresenta grande potencial para o melhoramento de novas cultivares com maior eficiência no uso do nitrogênio https://doi.org/10.11606/D.64.2021.tde-04092023-134221info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USP2023-12-21T18:12:57Zoai:teses.usp.br:tde-04092023-134221Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-22T12:07:41.987615Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.en.fl_str_mv Characterization of natural genetic variation in tomato (Solanum lycopersicum) for root ammonium uptake
dc.title.alternative.pt.fl_str_mv Caracterização da variação genética natural para a absorção de amônio em raiz de tomateiro (Solanum lycopersicum).
title Characterization of natural genetic variation in tomato (Solanum lycopersicum) for root ammonium uptake
spellingShingle Characterization of natural genetic variation in tomato (Solanum lycopersicum) for root ammonium uptake
Gabriel de Oliveira Ragazzo
title_short Characterization of natural genetic variation in tomato (Solanum lycopersicum) for root ammonium uptake
title_full Characterization of natural genetic variation in tomato (Solanum lycopersicum) for root ammonium uptake
title_fullStr Characterization of natural genetic variation in tomato (Solanum lycopersicum) for root ammonium uptake
title_full_unstemmed Characterization of natural genetic variation in tomato (Solanum lycopersicum) for root ammonium uptake
title_sort Characterization of natural genetic variation in tomato (Solanum lycopersicum) for root ammonium uptake
author Gabriel de Oliveira Ragazzo
author_facet Gabriel de Oliveira Ragazzo
author_role author
dc.contributor.advisor1.fl_str_mv Antonio Vargas de Oliveira Figueira
dc.contributor.advisor-co1.fl_str_mv Joni Esrom Lima
dc.contributor.referee1.fl_str_mv Ricardo Fabiano Hettwer Giehl
dc.contributor.referee2.fl_str_mv Fabio Tebaldi Silveira Nogueira
dc.contributor.author.fl_str_mv Gabriel de Oliveira Ragazzo
contributor_str_mv Antonio Vargas de Oliveira Figueira
Joni Esrom Lima
Ricardo Fabiano Hettwer Giehl
Fabio Tebaldi Silveira Nogueira
description Most cultivated plants, and especially tomato (Solanum lycopersicum), require large amounts of nitrogen (N) to achieve high commercial yields. Consequently, excessive quantities of the costly N-based fertilizers are supplied during crop cultivation. The investigation of the natural genetic variability for N uptake may help to design genetic strategies to improve N use efficiency (NUE) in tomato and, ultimately, decrease the amount of applied fertilizers. In plants, ammonium is the preferred source of N and is transported through proteins of the AMMONIUM TRANSPORTERS family (AMTs). Thus, the objective of this work was to identify and characterize AMTs, as well as possible regulations that alter the ammonium uptake in tomato. In a genomic survey, eight AMTs were identified in tomato, of which four had not been described before. The SlAMTs showed significant differences in expression between the plant tissues, indicating possible specific functions for each gene. In root, SlAMT1.1 was the most expressed and is described as the main responsible for ammonium uptake in several species. Diversity analysis indicated the presence of great variability in the SlAMT1.1 sequence between tomato accessions and wild Solanum species (section Lycopersicon). A study of 15N-labeled ammonium uptake kinetics under different N availability was carried out among the genotypes S. lycopersicum cv. M82, S. pimpinellifolium, S. habrochaites, and S. chmielewskii. When N was supplied at sufficient levels, S. chmielewskii showed a greater 15N-ammonium influx, which correlated with a higher level of SlAMT1.1 expression in this genotype. During ammonium resupply, S. habrochaites and S. chmielewskii genotypes showed less inhibition of the 15N-ammonium uptake process when compared to S. lycopersicum cv. M82 and S. pimpinellifolium. The expression levels suggest a differential allosteric regulation of SlAMT1.1 in these genotypes. These results suggest that variability in the SlAMT1.1 gene among tomato genotypes can provide different patterns of protein activity and gene expression under different N conditions. Finally, a genomic wide association study (GWAS) using 31 tomato accessions was carried out and indicated the presence of a SNP (GC) in the 3\' UTR region of a 14-3-3 gene, which seem necessary to modulate the expression of SlAMT1.1. Further evidences implied that this locus is associated with the signaling by brassinosteroids, although further studies are necessary to better describe this mechanism. In summary, natural genetic variation in tomato has great potential for breeding new cultivars with greater efficiency in the use of nitrogen
publishDate 2021
dc.date.issued.fl_str_mv 2021-08-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.11606/D.64.2021.tde-04092023-134221
url https://doi.org/10.11606/D.64.2021.tde-04092023-134221
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de São Paulo
dc.publisher.program.fl_str_mv Ciências (Energia Nuclear na Agricultura)
dc.publisher.initials.fl_str_mv USP
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1794502349866139648