Comparações de populações discretas

Detalhes bibliográficos
Autor(a) principal: Watanabe, Alexandre Hiroshi
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-11062013-095657/
Resumo: Um dos principais problemas em testes de hipóteses para a homogeneidade de curvas de sobrevivência ocorre quando as taxas de falha (ou funções de intensidade) não são proporcionais. Apesar do teste de Log-rank ser o teste não paramétrico mais utilizado para se comparar duas ou mais populações sujeitas a dados censurados, este teste apresentada duas restrições. Primeiro, toda a teoria assintótica envolvida com o teste de Log-rank, tem como hipótese o fato das populações envolvidas terem distribuições contínuas ou no máximo mistas. Segundo, o teste de Log-rank não apresenta bom comportamento quando as funções intensidade cruzam. O ponto inicial para análise consiste em assumir que os dados são contínuos e neste caso processos Gaussianos apropriados podem ser utilizados para testar a hipótese de homogeneidade. Aqui, citamos o teste de Renyi e Cramér-von Mises para dados contínuos (CCVM), ver Klein e Moeschberger (1997) [15]. Apesar destes testes não paramétricos apresentar bons resultados para dados contínuos, esses podem ter problemas para dados discretos ou arredondados. Neste trabalho, fazemos um estudo simulação da estatística de Cramér von-Mises (CVM) proposto por Leão e Ohashi [16], que nos permite detectar taxas de falha não proporcionais (cruzamento das taxas de falha) sujeitas a censuras arbitrárias para dados discretos ou arredondados. Propomos também, uma modificação no teste de Log-rank clássico para dados dispostos em uma tabela de contingência. Ao aplicarmos as estatísticas propostas neste trabalho para dados discretos ou arredondados, o teste desenvolvido apresenta uma função poder melhor do que os testes usuais
id USP_09a7814e1534944168ea0350389135e4
oai_identifier_str oai:teses.usp.br:tde-11062013-095657
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Comparações de populações discretasComparison of discrete populationsCensorshipCensuraCramér-von MisesCramér-von MisesCrossing hazardCruzamento de taxas de falhaDados discretosDiscrete dataLong-rank modificadoLong-rank ponderadoModified Long-rankMonte Carlos simulationSimulação Monte CarloWeighted Long-rankUm dos principais problemas em testes de hipóteses para a homogeneidade de curvas de sobrevivência ocorre quando as taxas de falha (ou funções de intensidade) não são proporcionais. Apesar do teste de Log-rank ser o teste não paramétrico mais utilizado para se comparar duas ou mais populações sujeitas a dados censurados, este teste apresentada duas restrições. Primeiro, toda a teoria assintótica envolvida com o teste de Log-rank, tem como hipótese o fato das populações envolvidas terem distribuições contínuas ou no máximo mistas. Segundo, o teste de Log-rank não apresenta bom comportamento quando as funções intensidade cruzam. O ponto inicial para análise consiste em assumir que os dados são contínuos e neste caso processos Gaussianos apropriados podem ser utilizados para testar a hipótese de homogeneidade. Aqui, citamos o teste de Renyi e Cramér-von Mises para dados contínuos (CCVM), ver Klein e Moeschberger (1997) [15]. Apesar destes testes não paramétricos apresentar bons resultados para dados contínuos, esses podem ter problemas para dados discretos ou arredondados. Neste trabalho, fazemos um estudo simulação da estatística de Cramér von-Mises (CVM) proposto por Leão e Ohashi [16], que nos permite detectar taxas de falha não proporcionais (cruzamento das taxas de falha) sujeitas a censuras arbitrárias para dados discretos ou arredondados. Propomos também, uma modificação no teste de Log-rank clássico para dados dispostos em uma tabela de contingência. Ao aplicarmos as estatísticas propostas neste trabalho para dados discretos ou arredondados, o teste desenvolvido apresenta uma função poder melhor do que os testes usuaisOne of the main problems in hypothesis testing for homogeneity of survival curves occurs when the failure rate (or intensity functions) are nonproportional. Although the Log-rank test is a nonparametric test most commonly used to compare two or more populations subject to censored data, this test presented two constraints. First, all the asymptotic theory involved with the Log-rank test, is the hypothesis that individuals and populations involved have continuous distributions or at best mixed. Second, the log-rank test does not show well when the intensity functions intersect. The starting point for the analysis is to assume that the data is continuous and in this case suitable Gaussian processes may be used to test the assumption of homogeneity. Here, we cite the Renyi test and Cramér-von Mises for continuous data (CCVM), and Moeschberger see Klein (1997) [15]. Despite these non-parametric tests show good results for continuous data, these may have trouble discrete data or rounded. In this work, we perform a simulation study of statistic Cramér-von Mises (CVM) proposed by Leão and Ohashi [16], which allows us to detect failure rates are nonproportional (crossing of failure rates) subject to censure for arbitrary data discrete or rounded. We also propose a modification of the test log-rank classic data arranged in a contingency table. By applying the statistics proposed in this paper for discrete or rounded data, developed the test shows a power function better than the usual testingBiblioteca Digitais de Teses e Dissertações da USPPinto Junior, Dorival LeãoWatanabe, Alexandre Hiroshi2013-04-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-11062013-095657/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:36Zoai:teses.usp.br:tde-11062013-095657Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:36Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Comparações de populações discretas
Comparison of discrete populations
title Comparações de populações discretas
spellingShingle Comparações de populações discretas
Watanabe, Alexandre Hiroshi
Censorship
Censura
Cramér-von Mises
Cramér-von Mises
Crossing hazard
Cruzamento de taxas de falha
Dados discretos
Discrete data
Long-rank modificado
Long-rank ponderado
Modified Long-rank
Monte Carlos simulation
Simulação Monte Carlo
Weighted Long-rank
title_short Comparações de populações discretas
title_full Comparações de populações discretas
title_fullStr Comparações de populações discretas
title_full_unstemmed Comparações de populações discretas
title_sort Comparações de populações discretas
author Watanabe, Alexandre Hiroshi
author_facet Watanabe, Alexandre Hiroshi
author_role author
dc.contributor.none.fl_str_mv Pinto Junior, Dorival Leão
dc.contributor.author.fl_str_mv Watanabe, Alexandre Hiroshi
dc.subject.por.fl_str_mv Censorship
Censura
Cramér-von Mises
Cramér-von Mises
Crossing hazard
Cruzamento de taxas de falha
Dados discretos
Discrete data
Long-rank modificado
Long-rank ponderado
Modified Long-rank
Monte Carlos simulation
Simulação Monte Carlo
Weighted Long-rank
topic Censorship
Censura
Cramér-von Mises
Cramér-von Mises
Crossing hazard
Cruzamento de taxas de falha
Dados discretos
Discrete data
Long-rank modificado
Long-rank ponderado
Modified Long-rank
Monte Carlos simulation
Simulação Monte Carlo
Weighted Long-rank
description Um dos principais problemas em testes de hipóteses para a homogeneidade de curvas de sobrevivência ocorre quando as taxas de falha (ou funções de intensidade) não são proporcionais. Apesar do teste de Log-rank ser o teste não paramétrico mais utilizado para se comparar duas ou mais populações sujeitas a dados censurados, este teste apresentada duas restrições. Primeiro, toda a teoria assintótica envolvida com o teste de Log-rank, tem como hipótese o fato das populações envolvidas terem distribuições contínuas ou no máximo mistas. Segundo, o teste de Log-rank não apresenta bom comportamento quando as funções intensidade cruzam. O ponto inicial para análise consiste em assumir que os dados são contínuos e neste caso processos Gaussianos apropriados podem ser utilizados para testar a hipótese de homogeneidade. Aqui, citamos o teste de Renyi e Cramér-von Mises para dados contínuos (CCVM), ver Klein e Moeschberger (1997) [15]. Apesar destes testes não paramétricos apresentar bons resultados para dados contínuos, esses podem ter problemas para dados discretos ou arredondados. Neste trabalho, fazemos um estudo simulação da estatística de Cramér von-Mises (CVM) proposto por Leão e Ohashi [16], que nos permite detectar taxas de falha não proporcionais (cruzamento das taxas de falha) sujeitas a censuras arbitrárias para dados discretos ou arredondados. Propomos também, uma modificação no teste de Log-rank clássico para dados dispostos em uma tabela de contingência. Ao aplicarmos as estatísticas propostas neste trabalho para dados discretos ou arredondados, o teste desenvolvido apresenta uma função poder melhor do que os testes usuais
publishDate 2013
dc.date.none.fl_str_mv 2013-04-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-11062013-095657/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-11062013-095657/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256864627097600