Mining user behavior in location-based social networks

Detalhes bibliográficos
Autor(a) principal: Rebaza, Jorge Carlos Valverde
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16112017-085356/
Resumo: Online social networks (OSNs) are Web platforms providing different services to facilitate social interaction among their users. A particular kind of OSNs is the location-based social network (LBSN), which adds services based on location. One of the most important challenges in LBSNs is the link prediction problem. Link prediction problem aims to estimate the likelihood of the existence of future friendships among user pairs. Most of the existing studies in link prediction focus on the use of a single information source to perform predictions, i.e. only social information (e.g. social neighborhood) or only location information (e.g. common visited places). However, some researches have shown that the combination of different information sources can lead to more accurate predictions. In this sense, in this thesis we propose different link prediction methods based on the use of different information sources naturally existing in these networks. Thus, we propose seven new link prediction methods using the information related to user membership in social overlapping groups: common neighbors within and outside of common groups (WOCG), common neighbors of groups (CNG), common neighbors with total and partial overlapping of groups (TPOG), group naïve Bayes (GNB), group naïve Bayes of common neighbors (GNB-CN), group naïve Bayes of Adamic-Adar (GNB-AA) and group naïve Bayes of Resource Allocation (GNB-RA). Due to that social groups exist naturally in networks, our proposals can be used in any type of OSN.We also propose new eight link prediction methods combining location and social information: Check-in Observation (ChO), Check-in Allocation (ChA), Within and Outside of Common Places (WOCP), Common Neighbors of Places (CNP), Total and Partial Overlapping of Places (TPOP), Friend Allocation Within Common Places (FAW), Common Neighbors of Nearby Places (CNNP) and Nearby Distance Allocation (NDA). These eight methods are exclusively for work in LBSNs. Obtained results indicate that our proposals are as competitive as state-of-the-art methods, or better than they in certain scenarios. Moreover, since our proposals tend to be computationally more efficient, they are more suitable for real-world applications.
id USP_0a46f7f8da1a3c0708d38f6b141c7d12
oai_identifier_str oai:teses.usp.br:tde-16112017-085356
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Mining user behavior in location-based social networksMineração do comportamento de usuários em redes sociais baseadas em localizaçãoAnálise do comportamento de usuáriosFriendship recommendationLink predictionLocation-based social networksPredição de linksRecomendação de amizadeRedes sociaisRedes sociais baseadas em localizaçãoSocial networksUser behavior analysisOnline social networks (OSNs) are Web platforms providing different services to facilitate social interaction among their users. A particular kind of OSNs is the location-based social network (LBSN), which adds services based on location. One of the most important challenges in LBSNs is the link prediction problem. Link prediction problem aims to estimate the likelihood of the existence of future friendships among user pairs. Most of the existing studies in link prediction focus on the use of a single information source to perform predictions, i.e. only social information (e.g. social neighborhood) or only location information (e.g. common visited places). However, some researches have shown that the combination of different information sources can lead to more accurate predictions. In this sense, in this thesis we propose different link prediction methods based on the use of different information sources naturally existing in these networks. Thus, we propose seven new link prediction methods using the information related to user membership in social overlapping groups: common neighbors within and outside of common groups (WOCG), common neighbors of groups (CNG), common neighbors with total and partial overlapping of groups (TPOG), group naïve Bayes (GNB), group naïve Bayes of common neighbors (GNB-CN), group naïve Bayes of Adamic-Adar (GNB-AA) and group naïve Bayes of Resource Allocation (GNB-RA). Due to that social groups exist naturally in networks, our proposals can be used in any type of OSN.We also propose new eight link prediction methods combining location and social information: Check-in Observation (ChO), Check-in Allocation (ChA), Within and Outside of Common Places (WOCP), Common Neighbors of Places (CNP), Total and Partial Overlapping of Places (TPOP), Friend Allocation Within Common Places (FAW), Common Neighbors of Nearby Places (CNNP) and Nearby Distance Allocation (NDA). These eight methods are exclusively for work in LBSNs. Obtained results indicate that our proposals are as competitive as state-of-the-art methods, or better than they in certain scenarios. Moreover, since our proposals tend to be computationally more efficient, they are more suitable for real-world applications.Redes sociais online (OSNs) são plataformas Web que oferecem serviços para promoção da interação social entre usuários. OSNs que adicionam serviços relacionados à geolocalização são chamadas redes sociais baseadas em localização (LBSNs). Um dos maiores desafios na análise de LBSNs é a predição de links. A predição de links refere-se ao problema de estimar a probabilidade de conexão futura entre pares de usuários que não se conhecem. Grande parte das pesquisas que focam nesse problema exploram o uso, de maneira isolada, de informações sociais (e.g. amigos em comum) ou de localização (e.g. locais comuns visitados). Porém, algumas pesquisas mostraram que a combinação de diferentes fontes de informação pode influenciar o incremento da acurácia da predição. Motivado por essa lacuna, neste trabalho foram desenvolvidos diferentes métodos para predição de links combinando diferentes fontes de informação. Assim, propomos sete métodos que usam a informação relacionada à participação simultânea de usuários en múltiples grupos sociais: common neighbors within and outside of common groups (WOCG), common neighbors of groups (CNG), common neighbors with total and partial overlapping of groups (TPOG), group naïve Bayes (GNB), group naïve Bayes of common neighbors (GNB-CN), group naïve Bayes of Adamic-Adar (GNB-AA), e group naïve Bayes of Resource Allocation (GNB-RA). Devido ao fato que a presença de grupos sociais não está restrita a alguns tipo de redes, essas propostas podem ser usadas nas diversas OSNs existentes, incluindo LBSNs. Também, propomos oito métodos que combinam o uso de informações sociais e de localização: Check-in Observation (ChO), Check-in Allocation (ChA), Within and Outside of Common Places (WOCP), Common Neighbors of Places (CNP), Total and Partial Overlapping of Places (TPOP), Friend Allocation Within Common Places (FAW), Common Neighbors of Nearby Places (CNNP), e Nearby Distance Allocation (NDA). Tais propostas são para uso exclusivo em LBSNs. Os resultados obtidos indicam que nossas propostas são tão competitivas quanto métodos do estado da arte, podendo até superá-los em determinados cenários. Ainda mais, devido a que na maioria dos casos nossas propostas são computacionalmente mais eficientes, seu uso resulta mais adequado em aplicações do mundo real.Biblioteca Digitais de Teses e Dissertações da USPLopes, Alneu de AndradeRebaza, Jorge Carlos Valverde2017-08-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-16112017-085356/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:38:18Zoai:teses.usp.br:tde-16112017-085356Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Mining user behavior in location-based social networks
Mineração do comportamento de usuários em redes sociais baseadas em localização
title Mining user behavior in location-based social networks
spellingShingle Mining user behavior in location-based social networks
Rebaza, Jorge Carlos Valverde
Análise do comportamento de usuários
Friendship recommendation
Link prediction
Location-based social networks
Predição de links
Recomendação de amizade
Redes sociais
Redes sociais baseadas em localização
Social networks
User behavior analysis
title_short Mining user behavior in location-based social networks
title_full Mining user behavior in location-based social networks
title_fullStr Mining user behavior in location-based social networks
title_full_unstemmed Mining user behavior in location-based social networks
title_sort Mining user behavior in location-based social networks
author Rebaza, Jorge Carlos Valverde
author_facet Rebaza, Jorge Carlos Valverde
author_role author
dc.contributor.none.fl_str_mv Lopes, Alneu de Andrade
dc.contributor.author.fl_str_mv Rebaza, Jorge Carlos Valverde
dc.subject.por.fl_str_mv Análise do comportamento de usuários
Friendship recommendation
Link prediction
Location-based social networks
Predição de links
Recomendação de amizade
Redes sociais
Redes sociais baseadas em localização
Social networks
User behavior analysis
topic Análise do comportamento de usuários
Friendship recommendation
Link prediction
Location-based social networks
Predição de links
Recomendação de amizade
Redes sociais
Redes sociais baseadas em localização
Social networks
User behavior analysis
description Online social networks (OSNs) are Web platforms providing different services to facilitate social interaction among their users. A particular kind of OSNs is the location-based social network (LBSN), which adds services based on location. One of the most important challenges in LBSNs is the link prediction problem. Link prediction problem aims to estimate the likelihood of the existence of future friendships among user pairs. Most of the existing studies in link prediction focus on the use of a single information source to perform predictions, i.e. only social information (e.g. social neighborhood) or only location information (e.g. common visited places). However, some researches have shown that the combination of different information sources can lead to more accurate predictions. In this sense, in this thesis we propose different link prediction methods based on the use of different information sources naturally existing in these networks. Thus, we propose seven new link prediction methods using the information related to user membership in social overlapping groups: common neighbors within and outside of common groups (WOCG), common neighbors of groups (CNG), common neighbors with total and partial overlapping of groups (TPOG), group naïve Bayes (GNB), group naïve Bayes of common neighbors (GNB-CN), group naïve Bayes of Adamic-Adar (GNB-AA) and group naïve Bayes of Resource Allocation (GNB-RA). Due to that social groups exist naturally in networks, our proposals can be used in any type of OSN.We also propose new eight link prediction methods combining location and social information: Check-in Observation (ChO), Check-in Allocation (ChA), Within and Outside of Common Places (WOCP), Common Neighbors of Places (CNP), Total and Partial Overlapping of Places (TPOP), Friend Allocation Within Common Places (FAW), Common Neighbors of Nearby Places (CNNP) and Nearby Distance Allocation (NDA). These eight methods are exclusively for work in LBSNs. Obtained results indicate that our proposals are as competitive as state-of-the-art methods, or better than they in certain scenarios. Moreover, since our proposals tend to be computationally more efficient, they are more suitable for real-world applications.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16112017-085356/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16112017-085356/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257084851126272