Computational approaches for the discovery of significant genes in cancer

Detalhes bibliográficos
Autor(a) principal: Cutigi, Jorge Francisco
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082021-100555/
Resumo: Cancer is a complex disease caused by the accumulation of genetic alterations during the individuals life. These alterations are named genetic mutations, which may be divided into two groups: 1) Passenger mutations: mutations that do not change the behavior of the cell; 2) Driver mutations: significant mutations for cancer, that cause carcinogenesis. Cancer cells have a large number of mutations, in which the large majority of them are passenger, and few mutations are drivers. The identification of significant mutated genes, i.e., genes with driver mutations, is essential for the understanding of the mechanisms of cancer initiation and progression. Such a task is a key challenge in cancer genomics, since several studies have shown many significant genes are mutated at a very low frequency. With the next generation DNA sequencing, large and complex genomic datasets have been generated, creating the challenge of analyzing and interpreting this data. Towards uncovering infrequently mutated genes, gene interaction networks combined with mutation data have been explored. This research presents computational approaches for the discovery of reliable significant cancer genes. Such a genes are prioritized by a network-based method which combines weighted mutation frequency and network neighbors influence, and possible false-positives are detected by machine learning-based method which uses mutation data and gene interaction networks to induce predictive models. An experimental study conducted with six types of cancer revealed the potential of the approaches on the discovering of known and possible novel reliable significant cancer genes.
id USP_0bb5290c84fe6033b7dcf05898e4112f
oai_identifier_str oai:teses.usp.br:tde-18082021-100555
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Computational approaches for the discovery of significant genes in cancerAbordagens computacionais para a descoberta de genes significativos para o câncerAbordagem computacionalBioinformática do câncerCancer bioinformaticsCancer genomicsCancer mutation dataComputational approachDados de mutação em câncerGene interaction networksGenes significativos para o câncerGenômica do câncerMutações significativas para o câncerRedes de interação gênicaSignificant genes in cancerSignificant mutations in cancerCancer is a complex disease caused by the accumulation of genetic alterations during the individuals life. These alterations are named genetic mutations, which may be divided into two groups: 1) Passenger mutations: mutations that do not change the behavior of the cell; 2) Driver mutations: significant mutations for cancer, that cause carcinogenesis. Cancer cells have a large number of mutations, in which the large majority of them are passenger, and few mutations are drivers. The identification of significant mutated genes, i.e., genes with driver mutations, is essential for the understanding of the mechanisms of cancer initiation and progression. Such a task is a key challenge in cancer genomics, since several studies have shown many significant genes are mutated at a very low frequency. With the next generation DNA sequencing, large and complex genomic datasets have been generated, creating the challenge of analyzing and interpreting this data. Towards uncovering infrequently mutated genes, gene interaction networks combined with mutation data have been explored. This research presents computational approaches for the discovery of reliable significant cancer genes. Such a genes are prioritized by a network-based method which combines weighted mutation frequency and network neighbors influence, and possible false-positives are detected by machine learning-based method which uses mutation data and gene interaction networks to induce predictive models. An experimental study conducted with six types of cancer revealed the potential of the approaches on the discovering of known and possible novel reliable significant cancer genes.O câncer é uma doença complexa provocada por alterações genéticas que se acumulam por toda a vida do indivíduo. A essas alterações dá-se o nome de mutação genética, as quais podem ser divididas em dois grupos: 1) Passenger mutations: mutações que não alteram o comportamento da célula; 2) Driver mutations: mutações significativas para o câncer, ou seja, que provocam a carcinogênese na célula. Células de câncer possuem um elevado número de mutações, das quais a maioria delas são passenger mutations e um pequeno número delas são driver mutations. A identificação de genes significativamente mutados, isto é, genes com mutações significativas, é essencial para a compreensão dos mecanismos de iniciação e progressão do câncer. Essa tarefa é um desafio chave na genômica do câncer, uma vez que estudos mostram que genes significativos podem sofrer mutação em uma frequência muito baixa. Com o sequenciamento de nova geração, uma extensa quantidade de conjuntos de dados genômicos foram gerados, criando o desafio de analisar e interpretar esses dados. Para identificar genes relacionados ao câncer com taxa de mutação baixa, redes de interação gênica combinadas com dados de mutação têm sido exploradas. Neste contexto, esta pesquisa apresenta abordagens computacionais para a descoberta de genes significativos para o câncer. O genes são priorizados por um método baseado em redes que combina frequência de mutação ponderada e influência de vizinhos na rede, e possíveis falsos positivos são detectados por método baseado em aprendizado de máquina, o qual utiliza-se de dados de mutação e redes de interação gênica para induzir modelos preditivos. Um estudo experimental conduzido com seis tipos de câncer revelou o potencial das abordagens na descoberta de genes já conhecidos e de possíveis novos genes significativos para o câncer.Biblioteca Digitais de Teses e Dissertações da USPEvangelista, Adriane FeijóSimão, Adenilso da SilvaCutigi, Jorge Francisco2021-07-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082021-100555/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-08-18T13:27:02Zoai:teses.usp.br:tde-18082021-100555Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-08-18T13:27:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Computational approaches for the discovery of significant genes in cancer
Abordagens computacionais para a descoberta de genes significativos para o câncer
title Computational approaches for the discovery of significant genes in cancer
spellingShingle Computational approaches for the discovery of significant genes in cancer
Cutigi, Jorge Francisco
Abordagem computacional
Bioinformática do câncer
Cancer bioinformatics
Cancer genomics
Cancer mutation data
Computational approach
Dados de mutação em câncer
Gene interaction networks
Genes significativos para o câncer
Genômica do câncer
Mutações significativas para o câncer
Redes de interação gênica
Significant genes in cancer
Significant mutations in cancer
title_short Computational approaches for the discovery of significant genes in cancer
title_full Computational approaches for the discovery of significant genes in cancer
title_fullStr Computational approaches for the discovery of significant genes in cancer
title_full_unstemmed Computational approaches for the discovery of significant genes in cancer
title_sort Computational approaches for the discovery of significant genes in cancer
author Cutigi, Jorge Francisco
author_facet Cutigi, Jorge Francisco
author_role author
dc.contributor.none.fl_str_mv Evangelista, Adriane Feijó
Simão, Adenilso da Silva
dc.contributor.author.fl_str_mv Cutigi, Jorge Francisco
dc.subject.por.fl_str_mv Abordagem computacional
Bioinformática do câncer
Cancer bioinformatics
Cancer genomics
Cancer mutation data
Computational approach
Dados de mutação em câncer
Gene interaction networks
Genes significativos para o câncer
Genômica do câncer
Mutações significativas para o câncer
Redes de interação gênica
Significant genes in cancer
Significant mutations in cancer
topic Abordagem computacional
Bioinformática do câncer
Cancer bioinformatics
Cancer genomics
Cancer mutation data
Computational approach
Dados de mutação em câncer
Gene interaction networks
Genes significativos para o câncer
Genômica do câncer
Mutações significativas para o câncer
Redes de interação gênica
Significant genes in cancer
Significant mutations in cancer
description Cancer is a complex disease caused by the accumulation of genetic alterations during the individuals life. These alterations are named genetic mutations, which may be divided into two groups: 1) Passenger mutations: mutations that do not change the behavior of the cell; 2) Driver mutations: significant mutations for cancer, that cause carcinogenesis. Cancer cells have a large number of mutations, in which the large majority of them are passenger, and few mutations are drivers. The identification of significant mutated genes, i.e., genes with driver mutations, is essential for the understanding of the mechanisms of cancer initiation and progression. Such a task is a key challenge in cancer genomics, since several studies have shown many significant genes are mutated at a very low frequency. With the next generation DNA sequencing, large and complex genomic datasets have been generated, creating the challenge of analyzing and interpreting this data. Towards uncovering infrequently mutated genes, gene interaction networks combined with mutation data have been explored. This research presents computational approaches for the discovery of reliable significant cancer genes. Such a genes are prioritized by a network-based method which combines weighted mutation frequency and network neighbors influence, and possible false-positives are detected by machine learning-based method which uses mutation data and gene interaction networks to induce predictive models. An experimental study conducted with six types of cancer revealed the potential of the approaches on the discovering of known and possible novel reliable significant cancer genes.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082021-100555/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082021-100555/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257107124977664