Computational approaches for the discovery of significant genes in cancer
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082021-100555/ |
Resumo: | Cancer is a complex disease caused by the accumulation of genetic alterations during the individuals life. These alterations are named genetic mutations, which may be divided into two groups: 1) Passenger mutations: mutations that do not change the behavior of the cell; 2) Driver mutations: significant mutations for cancer, that cause carcinogenesis. Cancer cells have a large number of mutations, in which the large majority of them are passenger, and few mutations are drivers. The identification of significant mutated genes, i.e., genes with driver mutations, is essential for the understanding of the mechanisms of cancer initiation and progression. Such a task is a key challenge in cancer genomics, since several studies have shown many significant genes are mutated at a very low frequency. With the next generation DNA sequencing, large and complex genomic datasets have been generated, creating the challenge of analyzing and interpreting this data. Towards uncovering infrequently mutated genes, gene interaction networks combined with mutation data have been explored. This research presents computational approaches for the discovery of reliable significant cancer genes. Such a genes are prioritized by a network-based method which combines weighted mutation frequency and network neighbors influence, and possible false-positives are detected by machine learning-based method which uses mutation data and gene interaction networks to induce predictive models. An experimental study conducted with six types of cancer revealed the potential of the approaches on the discovering of known and possible novel reliable significant cancer genes. |
id |
USP_0bb5290c84fe6033b7dcf05898e4112f |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18082021-100555 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Computational approaches for the discovery of significant genes in cancerAbordagens computacionais para a descoberta de genes significativos para o câncerAbordagem computacionalBioinformática do câncerCancer bioinformaticsCancer genomicsCancer mutation dataComputational approachDados de mutação em câncerGene interaction networksGenes significativos para o câncerGenômica do câncerMutações significativas para o câncerRedes de interação gênicaSignificant genes in cancerSignificant mutations in cancerCancer is a complex disease caused by the accumulation of genetic alterations during the individuals life. These alterations are named genetic mutations, which may be divided into two groups: 1) Passenger mutations: mutations that do not change the behavior of the cell; 2) Driver mutations: significant mutations for cancer, that cause carcinogenesis. Cancer cells have a large number of mutations, in which the large majority of them are passenger, and few mutations are drivers. The identification of significant mutated genes, i.e., genes with driver mutations, is essential for the understanding of the mechanisms of cancer initiation and progression. Such a task is a key challenge in cancer genomics, since several studies have shown many significant genes are mutated at a very low frequency. With the next generation DNA sequencing, large and complex genomic datasets have been generated, creating the challenge of analyzing and interpreting this data. Towards uncovering infrequently mutated genes, gene interaction networks combined with mutation data have been explored. This research presents computational approaches for the discovery of reliable significant cancer genes. Such a genes are prioritized by a network-based method which combines weighted mutation frequency and network neighbors influence, and possible false-positives are detected by machine learning-based method which uses mutation data and gene interaction networks to induce predictive models. An experimental study conducted with six types of cancer revealed the potential of the approaches on the discovering of known and possible novel reliable significant cancer genes.O câncer é uma doença complexa provocada por alterações genéticas que se acumulam por toda a vida do indivíduo. A essas alterações dá-se o nome de mutação genética, as quais podem ser divididas em dois grupos: 1) Passenger mutations: mutações que não alteram o comportamento da célula; 2) Driver mutations: mutações significativas para o câncer, ou seja, que provocam a carcinogênese na célula. Células de câncer possuem um elevado número de mutações, das quais a maioria delas são passenger mutations e um pequeno número delas são driver mutations. A identificação de genes significativamente mutados, isto é, genes com mutações significativas, é essencial para a compreensão dos mecanismos de iniciação e progressão do câncer. Essa tarefa é um desafio chave na genômica do câncer, uma vez que estudos mostram que genes significativos podem sofrer mutação em uma frequência muito baixa. Com o sequenciamento de nova geração, uma extensa quantidade de conjuntos de dados genômicos foram gerados, criando o desafio de analisar e interpretar esses dados. Para identificar genes relacionados ao câncer com taxa de mutação baixa, redes de interação gênica combinadas com dados de mutação têm sido exploradas. Neste contexto, esta pesquisa apresenta abordagens computacionais para a descoberta de genes significativos para o câncer. O genes são priorizados por um método baseado em redes que combina frequência de mutação ponderada e influência de vizinhos na rede, e possíveis falsos positivos são detectados por método baseado em aprendizado de máquina, o qual utiliza-se de dados de mutação e redes de interação gênica para induzir modelos preditivos. Um estudo experimental conduzido com seis tipos de câncer revelou o potencial das abordagens na descoberta de genes já conhecidos e de possíveis novos genes significativos para o câncer.Biblioteca Digitais de Teses e Dissertações da USPEvangelista, Adriane FeijóSimão, Adenilso da SilvaCutigi, Jorge Francisco2021-07-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082021-100555/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-08-18T13:27:02Zoai:teses.usp.br:tde-18082021-100555Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-08-18T13:27:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Computational approaches for the discovery of significant genes in cancer Abordagens computacionais para a descoberta de genes significativos para o câncer |
title |
Computational approaches for the discovery of significant genes in cancer |
spellingShingle |
Computational approaches for the discovery of significant genes in cancer Cutigi, Jorge Francisco Abordagem computacional Bioinformática do câncer Cancer bioinformatics Cancer genomics Cancer mutation data Computational approach Dados de mutação em câncer Gene interaction networks Genes significativos para o câncer Genômica do câncer Mutações significativas para o câncer Redes de interação gênica Significant genes in cancer Significant mutations in cancer |
title_short |
Computational approaches for the discovery of significant genes in cancer |
title_full |
Computational approaches for the discovery of significant genes in cancer |
title_fullStr |
Computational approaches for the discovery of significant genes in cancer |
title_full_unstemmed |
Computational approaches for the discovery of significant genes in cancer |
title_sort |
Computational approaches for the discovery of significant genes in cancer |
author |
Cutigi, Jorge Francisco |
author_facet |
Cutigi, Jorge Francisco |
author_role |
author |
dc.contributor.none.fl_str_mv |
Evangelista, Adriane Feijó Simão, Adenilso da Silva |
dc.contributor.author.fl_str_mv |
Cutigi, Jorge Francisco |
dc.subject.por.fl_str_mv |
Abordagem computacional Bioinformática do câncer Cancer bioinformatics Cancer genomics Cancer mutation data Computational approach Dados de mutação em câncer Gene interaction networks Genes significativos para o câncer Genômica do câncer Mutações significativas para o câncer Redes de interação gênica Significant genes in cancer Significant mutations in cancer |
topic |
Abordagem computacional Bioinformática do câncer Cancer bioinformatics Cancer genomics Cancer mutation data Computational approach Dados de mutação em câncer Gene interaction networks Genes significativos para o câncer Genômica do câncer Mutações significativas para o câncer Redes de interação gênica Significant genes in cancer Significant mutations in cancer |
description |
Cancer is a complex disease caused by the accumulation of genetic alterations during the individuals life. These alterations are named genetic mutations, which may be divided into two groups: 1) Passenger mutations: mutations that do not change the behavior of the cell; 2) Driver mutations: significant mutations for cancer, that cause carcinogenesis. Cancer cells have a large number of mutations, in which the large majority of them are passenger, and few mutations are drivers. The identification of significant mutated genes, i.e., genes with driver mutations, is essential for the understanding of the mechanisms of cancer initiation and progression. Such a task is a key challenge in cancer genomics, since several studies have shown many significant genes are mutated at a very low frequency. With the next generation DNA sequencing, large and complex genomic datasets have been generated, creating the challenge of analyzing and interpreting this data. Towards uncovering infrequently mutated genes, gene interaction networks combined with mutation data have been explored. This research presents computational approaches for the discovery of reliable significant cancer genes. Such a genes are prioritized by a network-based method which combines weighted mutation frequency and network neighbors influence, and possible false-positives are detected by machine learning-based method which uses mutation data and gene interaction networks to induce predictive models. An experimental study conducted with six types of cancer revealed the potential of the approaches on the discovering of known and possible novel reliable significant cancer genes. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082021-100555/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082021-100555/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257107124977664 |