Property testing and parameter estimation

Detalhes bibliográficos
Autor(a) principal: Stagni, Henrique
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-11022021-194125/
Resumo: A graph property P is said to be testable with sample complexity q(\\eps) if, for every \\eps>0, there is a randomized decision algorithm that distinguishes objects satisfying P from graphs ``\\eps-far\'\' from satisfying P, after inspecting a sample of size at most q(\\eps) of the input graph G (in particular, the sample size does not depend on |V(G)|). Although the set of testable graph properties is now well understood, results for general properties P tipically rely on variants of Szemerédi\'s regularity lemma, giving tower-type upper bounds for the sample complexity q(\\eps). Therefore, current research in the area is focused on obtaining better bounds for the sample complexity required to test specific properties P. A (normalized) graph parameter f is said to be estimable with sample complexity q(\\eps) if, for every \\eps>0, there is a randomized algorithm that estimates the parameter f(G) up to an additive error of \\eps, after inspecting a sample of size at most q(\\eps) of the input G. If the graph parameter being estimated is the distance \\dP to a graph property P, Fischer and Newman proved that \\dP is estimable for every testable P, but their proof provides a tower-type upper bound for estimating \\dP, even if P can be efficiently testable. This thesis focuses on getting better upper bounds for the sample complexity required to estimate certain parameters and test certain properties. Our first contribution states that one can test the property of having a partition of size k with any given prescribed pairwise densities with a sample complexity polynomial in \\eps^ and k. This result, which improves upon a previous (exponential in k) bound given by Goldreich, Goldwasser and Ron (1998), is an important tool for achieving our other contributions. Our main contribution shows that if a hereditary property P is testable with sample complexity q(\\eps), then distance \\dP is estimable with sample complexity at most exponential in q(\\eps). In particular, for hereditary properties P known to be be efficiently testable, our method provides much better bounds than the ones relying on Szemerédi\'s regularity lemma. Our techniques also allow one to get more reasonable bounds for estimating other graph parameters. We also prove negative results about testing graph properties described by linear constraints of subgraph densities, which were considered by Goldreich and Shinkar (2016). We conclude this thesis by proving bounds for the complexity of testing that every hereditary property of configurations of points in the plane is testable.
id USP_0cd9f7d7a94b965eda43ae223f9b9f0b
oai_identifier_str oai:teses.usp.br:tde-11022021-194125
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Property testing and parameter estimationTeste de propriedades e estimação de parâmetrosCombinatorial typesDistância de ediçãoEdit distanceErdos-Hajnal propertyEstimação de parâmetrosHereditary propertiesLemas de regularidadeMonotone propertiesO-tiposOrder typesParameter estimationProperty testingPropriedade de Erdos-HajnalPropriedades hereditáriasPropriedades monótonasRegularity lemmasSpeed of subgraph classesTeste de propriedadesTipos combinatóriosVelocidade de classes de grafosA graph property P is said to be testable with sample complexity q(\\eps) if, for every \\eps>0, there is a randomized decision algorithm that distinguishes objects satisfying P from graphs ``\\eps-far\'\' from satisfying P, after inspecting a sample of size at most q(\\eps) of the input graph G (in particular, the sample size does not depend on |V(G)|). Although the set of testable graph properties is now well understood, results for general properties P tipically rely on variants of Szemerédi\'s regularity lemma, giving tower-type upper bounds for the sample complexity q(\\eps). Therefore, current research in the area is focused on obtaining better bounds for the sample complexity required to test specific properties P. A (normalized) graph parameter f is said to be estimable with sample complexity q(\\eps) if, for every \\eps>0, there is a randomized algorithm that estimates the parameter f(G) up to an additive error of \\eps, after inspecting a sample of size at most q(\\eps) of the input G. If the graph parameter being estimated is the distance \\dP to a graph property P, Fischer and Newman proved that \\dP is estimable for every testable P, but their proof provides a tower-type upper bound for estimating \\dP, even if P can be efficiently testable. This thesis focuses on getting better upper bounds for the sample complexity required to estimate certain parameters and test certain properties. Our first contribution states that one can test the property of having a partition of size k with any given prescribed pairwise densities with a sample complexity polynomial in \\eps^ and k. This result, which improves upon a previous (exponential in k) bound given by Goldreich, Goldwasser and Ron (1998), is an important tool for achieving our other contributions. Our main contribution shows that if a hereditary property P is testable with sample complexity q(\\eps), then distance \\dP is estimable with sample complexity at most exponential in q(\\eps). In particular, for hereditary properties P known to be be efficiently testable, our method provides much better bounds than the ones relying on Szemerédi\'s regularity lemma. Our techniques also allow one to get more reasonable bounds for estimating other graph parameters. We also prove negative results about testing graph properties described by linear constraints of subgraph densities, which were considered by Goldreich and Shinkar (2016). We conclude this thesis by proving bounds for the complexity of testing that every hereditary property of configurations of points in the plane is testable.Uma propriedade P de grafos é testável com complexidade amostral q(\\eps) se, para todo \\eps>0, existe um algoritmo aleatorizado que distingue grafos que satisfazem P de grafos ``\\eps-longe\'\' de a satisfazer P, após inspecionar uma amostra de tamanho no máximo q(\\eps) do grafo de entrada G (em particular, o tamanho da amostra independe de |V(G)|). Apesar do conjunto de propriedades testáveis ter sido completamente caracterizado, resultados gerais sobre testabilidade costumam se basear em variantes do lema da regularidade de Szemerédi e dão cotas superiores do tipo torre de exponenciais para q(\\eps). Portanto, a pesquisa na área tem se concentrado em obter melhores cotas para a complexidade amostral para se testar certas propriedades P. Um parâmetro (normalizado) de grafo f é estimável com complexidade amostral q(\\eps) se, para todo \\eps>0, existe um algoritmo aleatorizado que computa f(G), a menos de um erro aditivo de \\eps, após inspecionar uma amostra de tamanho no máximo q(\\eps) do grafo de entrada G. Se o parâmetro em questão é a distância \\dP a uma propriedade P, Fischer e Newman (2007) provaram que \\dP é estimável para toda propriedade testável P. Contudo, o método deles fornece uma cota do tipo torre, mesmo para propriedades P que podem ser eficientemente testadas. O objetivo desta tese é fornecer melhores cotas superiores para a complexidade amostral para estimar certos parâmetros e testar certas propriedades. Nossa primeira contribuição afere que é possível testar se um grafo admite uma partição de tamanho k com densidades pré-especificadas entre pares de partes com complexidade amostral polinomial em \\eps e k. Esse resultado, que representa uma melhora em relação à cota exponencial em k obtida por Goldreich, Goldwasser e Ron (1998), é essencial para a obtenção de nossas outras contribuições. Nossa principal contribuição afere que se uma propriedade hereditária P é testável com complexidade amostral q, então \\dP é estimável com complexidade amostral apenas exponencial em q. Em particular, para propriedades hereditárias P que podem ser eficientemente testáveis, nosso método fornece cotas melhores do que as baseadas no lema da regularidade de Szemerédi. As técnicas empregadas também nos permitem obter cotas mais razoáveis para estimar outros parâmetros de grafos. Provamos também resultados negativos a respeito de propriedades consideradas por Goldreich e Shinkar (2016), descritas por restrições lineares das densidades de subgrafos. Concluímos a tese mostrando que propriedades hereditárias de configurações de pontos no plano são testáveis.Biblioteca Digitais de Teses e Dissertações da USPKohayakawa, YoshiharuStagni, Henrique2020-11-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-11022021-194125/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-02-16T22:26:21Zoai:teses.usp.br:tde-11022021-194125Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-02-16T22:26:21Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Property testing and parameter estimation
Teste de propriedades e estimação de parâmetros
title Property testing and parameter estimation
spellingShingle Property testing and parameter estimation
Stagni, Henrique
Combinatorial types
Distância de edição
Edit distance
Erdos-Hajnal property
Estimação de parâmetros
Hereditary properties
Lemas de regularidade
Monotone properties
O-tipos
Order types
Parameter estimation
Property testing
Propriedade de Erdos-Hajnal
Propriedades hereditárias
Propriedades monótonas
Regularity lemmas
Speed of subgraph classes
Teste de propriedades
Tipos combinatórios
Velocidade de classes de grafos
title_short Property testing and parameter estimation
title_full Property testing and parameter estimation
title_fullStr Property testing and parameter estimation
title_full_unstemmed Property testing and parameter estimation
title_sort Property testing and parameter estimation
author Stagni, Henrique
author_facet Stagni, Henrique
author_role author
dc.contributor.none.fl_str_mv Kohayakawa, Yoshiharu
dc.contributor.author.fl_str_mv Stagni, Henrique
dc.subject.por.fl_str_mv Combinatorial types
Distância de edição
Edit distance
Erdos-Hajnal property
Estimação de parâmetros
Hereditary properties
Lemas de regularidade
Monotone properties
O-tipos
Order types
Parameter estimation
Property testing
Propriedade de Erdos-Hajnal
Propriedades hereditárias
Propriedades monótonas
Regularity lemmas
Speed of subgraph classes
Teste de propriedades
Tipos combinatórios
Velocidade de classes de grafos
topic Combinatorial types
Distância de edição
Edit distance
Erdos-Hajnal property
Estimação de parâmetros
Hereditary properties
Lemas de regularidade
Monotone properties
O-tipos
Order types
Parameter estimation
Property testing
Propriedade de Erdos-Hajnal
Propriedades hereditárias
Propriedades monótonas
Regularity lemmas
Speed of subgraph classes
Teste de propriedades
Tipos combinatórios
Velocidade de classes de grafos
description A graph property P is said to be testable with sample complexity q(\\eps) if, for every \\eps>0, there is a randomized decision algorithm that distinguishes objects satisfying P from graphs ``\\eps-far\'\' from satisfying P, after inspecting a sample of size at most q(\\eps) of the input graph G (in particular, the sample size does not depend on |V(G)|). Although the set of testable graph properties is now well understood, results for general properties P tipically rely on variants of Szemerédi\'s regularity lemma, giving tower-type upper bounds for the sample complexity q(\\eps). Therefore, current research in the area is focused on obtaining better bounds for the sample complexity required to test specific properties P. A (normalized) graph parameter f is said to be estimable with sample complexity q(\\eps) if, for every \\eps>0, there is a randomized algorithm that estimates the parameter f(G) up to an additive error of \\eps, after inspecting a sample of size at most q(\\eps) of the input G. If the graph parameter being estimated is the distance \\dP to a graph property P, Fischer and Newman proved that \\dP is estimable for every testable P, but their proof provides a tower-type upper bound for estimating \\dP, even if P can be efficiently testable. This thesis focuses on getting better upper bounds for the sample complexity required to estimate certain parameters and test certain properties. Our first contribution states that one can test the property of having a partition of size k with any given prescribed pairwise densities with a sample complexity polynomial in \\eps^ and k. This result, which improves upon a previous (exponential in k) bound given by Goldreich, Goldwasser and Ron (1998), is an important tool for achieving our other contributions. Our main contribution shows that if a hereditary property P is testable with sample complexity q(\\eps), then distance \\dP is estimable with sample complexity at most exponential in q(\\eps). In particular, for hereditary properties P known to be be efficiently testable, our method provides much better bounds than the ones relying on Szemerédi\'s regularity lemma. Our techniques also allow one to get more reasonable bounds for estimating other graph parameters. We also prove negative results about testing graph properties described by linear constraints of subgraph densities, which were considered by Goldreich and Shinkar (2016). We conclude this thesis by proving bounds for the complexity of testing that every hereditary property of configurations of points in the plane is testable.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-11022021-194125/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-11022021-194125/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256854667722752